【題目】在平行四邊形ABCD中E是BC邊上一點,且AB=AE,AE,DC的延長線相交于點F.
(1)若∠F=62°,求∠D的度數(shù);
(2)若BE=3EC,且△EFC的面積為1,求平行四邊形ABCD的面積.
【答案】(1)(2)
【解析】
(1)由四邊形ABCD是平行四邊形,∠F=62°,易求得∠BAE的度數(shù),又由AB=BE,即可求得∠B的度數(shù),然后由平形四邊形的對角相等,即可求得∠D的度數(shù);
(2)根據(jù)相似三角形的性質(zhì)求出△FEC與△FAD的相似比,得到其面積比,再找到△FEC與平行四邊形的關(guān)系,求出平行四邊形的面積.
(1)∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∴∠BAF=∠F=62°,
∵AB=BE,
∴∠AEB=∠BAE=62°,
∴∠B=180°-∠BAE-∠AEB=56°,
∵在平行四邊形ABCD中,∠D=∠B,
∴∠D=56°.
(2)∵DC∥AB,
∴△CEF∽△BEA.
∵BE=3EC
∴,
∵S△EFC=1.
∴S△ABE=9a,
∵
∴
∴
∴
∵
∴
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=6,AC=10,AD是BC邊上的中線,且AD=4,延長AD到點E,使DE=AD,連接CE.
(1)求證:△AEC是直角三角形.
(2)求BC邊的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】10袋小麥以每袋150干克為準,超過的干克數(shù)記為正數(shù),不足的干克數(shù)記為負數(shù),分別記為:-6,-3,-1,-2,+7,+3,+4,-3,-2,0.
(1)在這10袋小麥中,最重和最輕的分別重多少干克?
(2)與標準質(zhì)量相比較,這10袋小麥超過或不足多少干克?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下圖是某同學在沙灘上用石于擺成的小房子.
觀察圖形的變化規(guī)律,寫出第n個小房子用了___________________塊石子.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC.利用直尺和圓規(guī),根據(jù)下列要求作圖(不寫作法,保留作圖痕跡),并回答問題.
(1)作∠ABC的平分線BD、交AC于點D;
(2)作線段BD的垂直平分線,交AB于點E,交BC于點F,連接DE,DF;
(3)寫出你所作出的圖形中的相等線段.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商廈進貨員預測一種應季襯衫能暢銷市場,就用萬元購進這種襯衫,面市后果然供不應求.商廈又用萬元購進第二批這種襯衫,所購數(shù)量是第一批進量的倍,但單價貴了元.商廈銷售這種襯衫時每件定價元,最后剩下件按八折銷售,很快售完.在這兩筆生意中,商廈共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,且AB=4,點C在半徑OA上(點C與點O、點A不重合),過點C作AB的垂線交⊙O于點D.連接OD,過點B作OD的平行線交⊙O于點E,交CD的延長線于點F.
(1)若點E是的中點,求∠F的度數(shù);
(2)求證:BE=2OC;
(3)設AC=x,則當x為何值時BEEF的值最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,函數(shù)y=x的圖象與函數(shù)y=(x>0)的圖象相交于點P(2,m).
(1)求m,k的值;
(2)直線y=4與函數(shù)y=x的圖象相交于點A,與函數(shù)y=(x>0)的圖象相交于點B,求線段AB長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com