已知:如圖,直線MN交⊙O于A、B兩點(diǎn),AC是直徑,AD平分∠CAM交⊙O于點(diǎn)D,過(guò)點(diǎn)D作DE⊥MN,垂足為E.∠ADE=30°,⊙O的半徑為2,圖中陰影部分的面積為
3
-
3
3
-
3
分析:連接OB,易證△OAB是等邊三角形,求得扇形OAB的面積減去△OAB的面積,即可求得陰影部分的面積.
解答:解:連接OB.
∵DE⊥MN,
∴直角△AED中,∠DAE=90°-∠ADE=60°,
∵AD平分∠CAM交⊙O于點(diǎn)D,
∴∠CAM=2∠DAE=120°,
∴∠OAB=60°,
∵OA=OB,
∴△AOB是等邊三角形.
∴S△AOB=
3
×22
4
=
3

S扇形OAB=
60π×22
360
=
3
,
則陰影部分的面積為
3
-
3

故答案是:
3
-
3
點(diǎn)評(píng):本題考查了扇形的面積的計(jì)算,正確證明△OAB是等邊三角形是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,直線MN交⊙O于A,B兩點(diǎn),AC是直徑,AD平分∠CAM交⊙O于D,過(guò)D作DE⊥MN于E.
(1)求證:DE是⊙O的切線;
(2)若DE=6cm,AE=3cm,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•路北區(qū)三模)已知:如圖,直線MN交⊙O于A、B兩點(diǎn),AC是直徑,AD平分∠CAM交⊙O于點(diǎn)D,過(guò)點(diǎn)D作DE⊥MN,垂足為E.
(1)求證:DE是⊙O的切線;
(2)若∠ADE=30°,⊙O的半徑為2,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2002•岳陽(yáng))已知:如圖,直線MN和⊙O切于點(diǎn)C,AB是⊙O的直徑,AE⊥MN,BF⊥MN且與⊙O交于點(diǎn)G,垂足分別是E、F,AC是⊙O的弦,
(1)求證:AB=AE+BF;
(2)令A(yù)E=m,EF=n,BF=p,證明:n2=4mp;
(3)設(shè)⊙O的半徑為5,AC=6,求以AE、BF的長(zhǎng)為根的一元二次方程;
(4)將直線MN向上平行移動(dòng)至與⊙O相交時(shí),m、n、p之間有什么關(guān)系?向下平行移動(dòng)至與⊙O相離時(shí),m、n、p之間又有什么關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖,直線MN交⊙O于A、B兩點(diǎn),AC是直徑,DE切⊙O于D,DE⊥MN于E.
(1)求證:AD平分∠CAM.
(2)若DE=8cm,AE=4cm,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案