【題目】如圖,把n個邊長為1的正方形拼接成一排,求得tanBA1C=1,tanBA2C=,tanBA3C=,計算tanBA4C=_____,…按此規(guī)律,寫出tanBAnC=_____(用含n的代數(shù)式表示).

【答案】

【解析】

試題過點CCHBA4H,根據(jù)正方形的性質(zhì)、勾股定理分別先求出A4CA4B,再根據(jù)三角形的面積公式求出CH,根據(jù)勾股定理得出A4H,根據(jù)正切的概念求出tan∠BA4C,最后總結(jié)規(guī)律解答.

解:如圖,過點CCHBA4H,

由勾股定理得BA4A4C,∵SBA4C×BC×1=,

×BA4×CH××CH =,解得CH,則A4H,

∴tan∠BA4C.

∵tan∠BA1C=1,tan∠BA2C,tan∠BA3C,tan∠BA4C.

1=12-1+1,3=22-2+1,7=32-3+1,13=42-4+1,

∴tan∠BAnC.

故答案為,.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C為線段AD上一點,BCD的中點,AD=8cm,BD=1cm

(1)AC的長

(2)若點E在直線AD,EA=2cm,BE的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣3.

(1)若函數(shù)圖象經(jīng)過點(1,﹣4),(﹣1,0),求a,b的值;

(2)證明:若2a﹣b=1,則存在一條確定的直線始終與該函數(shù)圖象交于兩點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某自行車廠一周計劃生產(chǎn)1400輛自行車,平均每天生產(chǎn)200輛,由于各種原因?qū)嶋H每天生產(chǎn)量與計劃量相比有出入.下表是某周的生產(chǎn)情況(超產(chǎn)為正、減產(chǎn)為負):

星期

增減

1)根據(jù)記錄可知前三天共生產(chǎn)______輛.

2)產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)_______輛.

3)該廠實行每周計件工資制,每生產(chǎn)一輛車可得60元,若超額完成任務(wù),則超過部分每輛另獎15元;少生產(chǎn)一輛扣15元,那么該廠工人這一周的工資總額是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一條筆直的東西向海岸線l上有一長為1.5km的碼頭MN和燈塔C,燈塔C距碼頭的東端N20km.一輪船以36km/h的速度航行,上午1000A處測得燈塔C位于輪船的北偏西30°方向,上午1040B處測得燈塔C位于輪船的北偏東60°方向,且與燈塔C相距12km.

(1)若輪船照此速度與航向航向,何時到達海岸線?

(2)若輪船不改變航向,該輪船能否停靠在碼頭?請說明理由(參考數(shù)據(jù): ≈1.4, ≈1.7)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市為解決農(nóng)村燃氣困難,在P處建立了一個燃氣站,從P站分別向AB、C村鋪設(shè)燃氣管道。已知B村在A村的北偏東60°方向,距離A2.4km,C村在A村的正東方向,距離A1.8km,要使此工程費用最省,管道PA+PB+PC之和需最短,則最短長度為______________km.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料,回答以下問題:

我們知道,二元一次方程有無數(shù)個解,在平面直角坐標系中,我們標出以這個方程的解為坐標的點,就會發(fā)現(xiàn)這些點在同一條直線上.

例如是方程的一個解,對應(yīng)點,如下圖所示,我們在平面直角坐標系中將其標出,另外方程的解還有對應(yīng)點將這些點連起來正是一條直線,反過來,在這條直線上任取一點,這個點的坐標也是方程的解.所以,我們就把條直線就叫做方程的圖象.

一般的,任意二元一次方程解的對應(yīng)點連成的直線就叫這個方程的圖象.請問:

1)已知,則點__________(填“A)在方程的圖象上.

2)求方程和方程圖象的交點坐標.

3)已知以關(guān)于的方程組的解為坐標的點在方程的圖象上,當時,化簡

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】實驗數(shù)據(jù)顯示,一般成人喝半斤低度白酒后,1.5時內(nèi)其血液中酒精含量y(毫克/百毫升)與時間(時)的關(guān)系可近似地用二次函數(shù)刻畫;1.5時后(包括1.5時)y與x可近似地用反比例函數(shù)(k>0)刻畫(如圖所示).

(1)根據(jù)上述數(shù)學模型計算:

喝酒后幾時血液中的酒精含量達到最大值?最大值為多少?

=5時,y=45.求k的值.

(2)按國家規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升時屬于“酒后駕駛”,不能駕車上路.參照上述數(shù)學模型,假設(shè)某駕駛員晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否駕車去上班?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=3,點E,F(xiàn)分別在CD,AD上,CE=DF,BE,CF相交于點G.若圖中陰影部分的面積與正方形ABCD的面積之比為2:3,則BCG的周長為_____

查看答案和解析>>

同步練習冊答案