【題目】如圖,矩形中,為上一動(dòng)點(diǎn)(與不重合),將沿翻折至,與相交于點(diǎn),與相交于點(diǎn),連接交于,若,則的長=______,折痕的長_____.
【答案】5
【解析】
根據(jù)折疊及矩形的性質(zhì)得到∠B1QF =∠CB1B,即可得到QF= B1F=5,如圖,過點(diǎn)Q作QH⊥PB1于點(diǎn)H,得到△EHQ∽△EB1F,利用相似比得到EH,QH,從而得到B1H及B1Q,計(jì)算出cos∠HB1Q=,根據(jù)等量代換得到∠PB1B=∠PBB1=∠PCB,利用cos∠PCB = cos∠HB1Q=即可計(jì)算得出PC的值.
解:由折疊可知,PC 垂直平分BB1,
∴BC=B1C,BP=B1P,
∴∠CBB1=∠CB1B,∠PBB1=∠PB1B
∵四邊形ABCD是矩形,
∴AD∥BC,
∴∠CBB1=∠B1QF,
∴∠B1QF =∠CB1B,
∴QF= B1F,
∵,
∴B1F=5,EF=13,
∴,
如圖,過點(diǎn)Q作QH⊥PB1于點(diǎn)H,
∵∠PB1C=90°,
∴QH∥B1F,
∴△EHQ∽△EB1F,
∴,
即,
∴EH=,QH=,
∴B1H=
∴,
∴cos∠HB1Q=
又∵∠PBB1+∠BPC=90°,∠BPC+∠PCB=90°,
∴∠PB1B=∠PBB1=∠PCB,
∴cos∠PCB = cos∠HB1Q=
又∵,
∴cos∠PCB,即,
∴PC=,
故答案為:5,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),將二次函數(shù)的圖象繞點(diǎn)旋轉(zhuǎn)180度得到圖象為,當(dāng)時(shí),圖象上點(diǎn)縱坐標(biāo)的最小值為,則_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請分別在下列圖中使用無刻度的直尺按要求畫圖.
(1)在圖1中,點(diǎn)P是ABCD邊AD上的中點(diǎn),過點(diǎn)P畫一條線段PM,使PM=AB.
(2)在圖2中,點(diǎn)A、D分別是BCEF邊FB和EC上的中點(diǎn),且點(diǎn)P是邊EC上的動(dòng)點(diǎn),畫出△PAB的一條中位線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明站在某廣場一看臺(tái)C處,從眼睛D處測得廣場中心F的俯角為21°,若CD=1.6米,BC=1.5米,BC平行于地面FA,臺(tái)階AB的坡度為i=3:4,坡長AB=10米,則看臺(tái)底端A點(diǎn)距離廣場中心F點(diǎn)的距離約為(參考數(shù)據(jù):sin21°≈0.36,cos21°≈0.93,tan21°≈0.38)( )
A.8.8米B.9.5米C.10.5米D.12米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-1,0),B(3,0),C(0,-3)三點(diǎn),直線l是拋物線的對稱軸.
(1)求拋物線的函數(shù)解析式;
(2)設(shè)點(diǎn)M是直線l上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)M到點(diǎn)A,點(diǎn)C的距離之和最短時(shí),求點(diǎn)M的坐標(biāo);
(3)在拋物線上是否存在點(diǎn)N,使S⊿ABN=S⊿ABC,若存在,求出點(diǎn)N的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為平分線,,以的長為直徑作交于點(diǎn),過點(diǎn)作于點(diǎn).
(1)求證:是的切線.
(2)若,的長=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的口袋中裝有個(gè)分別標(biāo)有數(shù)的小球,它們的形狀、大小完全相同,小紅先從口袋里隨機(jī)摸出一個(gè)小球記下數(shù)為,小穎在剩下的個(gè)球中隨機(jī)摸出一個(gè)小球記下數(shù)為,這樣確定了點(diǎn)的坐標(biāo).
(1)請你利用列表法或畫樹狀圖法求點(diǎn)的橫、縱坐標(biāo)均能被整除的概率.
(2)記點(diǎn)關(guān)于軸的對稱點(diǎn)為,求點(diǎn)位于反比例函數(shù)圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=x2+bx+c的對稱軸為直線x=1,且經(jīng)過點(diǎn)(﹣1,0).若關(guān)于x的一元二次方程x2+bx+c﹣t=0(t為實(shí)數(shù))在﹣1<x<4的范圍內(nèi)有實(shí)數(shù)根,則t的取值范圍是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如圖1,則有;若△ABC為銳角三角形時(shí),小明猜想:,理由如下:如圖2,過點(diǎn)A作AD⊥CB于點(diǎn)D,設(shè)CD=x.在Rt△ADC中,,在Rt△ADB中,,∴.
∵a>0,x>0,∴2ax>0,∴,∴當(dāng)△ABC為銳角三角形時(shí).
所以小明的猜想是正確的.
(1)請你猜想,當(dāng)△ABC為鈍角三角形時(shí), 與的大小關(guān)系.
(2)溫馨提示:在圖3中,作BC邊上的高.
(3)證明你猜想的結(jié)論是否正確.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com