如圖,將透明三角形紙片PAB的直角頂點(diǎn)P落在第四象限,頂點(diǎn)A、B分別落在反比例函數(shù)y=圖象的兩支上,且PB⊥x于點(diǎn)C,PA⊥y于點(diǎn)D,AB分別與x軸,y軸相交于點(diǎn)E、F.已知B(1,3).

(1)k= ;

(2)試說明AE=BF;

(3)當(dāng)四邊形ABCD的面積為時(shí),求點(diǎn)P的坐標(biāo).

(1)3;(2)證明見解析;(3)(1,﹣2).

【解析】

試題分析:(1)根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征易得k=3;

(2)設(shè)A點(diǎn)坐標(biāo)為(a,),易得D點(diǎn)坐標(biāo)為(0,),P點(diǎn)坐標(biāo)為(1,),C點(diǎn)坐標(biāo)為(1,0),根據(jù)圖形與坐標(biāo)的關(guān)系得到PB=3﹣,PC=﹣,PA=1﹣a,PD=1,則可計(jì)算出,加上∠CPD=∠BPA,根據(jù)相似的判定得到△PCD∽△PBA,則∠PCD=∠PBA,于是判斷CD∥BA,根據(jù)平行四邊形的判定方法易得四邊形BCDE、ADCF都是平行四邊形,所以BE=CD,AF=CD,則BE=AF,于是有AE=BF;

(3)利用四邊形ABCD的面積=S△PAB﹣S△PCD,和三角形面積公式得到(3﹣)(1﹣a)﹣1(﹣)=,整理得2a2+3a=0,然后解方程求出a的值,再寫出P點(diǎn)坐標(biāo).

試題解析:(1)把B(1,3)代入y=得k=1×3=3;

(2)反比例函數(shù)解析式為y=,

設(shè)A點(diǎn)坐標(biāo)為(a,),

∵PB⊥x于點(diǎn)C,PA⊥y于點(diǎn)D,

∴D點(diǎn)坐標(biāo)為(0,),P點(diǎn)坐標(biāo)為(1,),C點(diǎn)坐標(biāo)為(1,0),

∴PB=3﹣,PC=﹣,PA=1﹣a,PD=1,

,,

,

而∠CPD=∠BPA,

∴△PCD∽△PBA,

∴∠PCD=∠PBA,

∴CD∥BA,

而BC∥DE,AD∥FC,

∴四邊形BCDE、ADCF都是平行四邊形,

∴BE=CD,AF=CD,

∴BE=AF,

∴AF+EF=BE+EF,

即AE=BF;

(3)∵四邊形ABCD的面積=S△PAB﹣S△PCD,

(3﹣)(1﹣a)﹣1(﹣)=,

整理得2a2+3a=0,解得a1=0(舍去),a2=﹣,

∴P點(diǎn)坐標(biāo)為(1,﹣2).

考點(diǎn):反比例函數(shù)綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年山東省新泰市九年級(jí)上學(xué)期學(xué)業(yè)水平模擬數(shù)學(xué)試卷(解析版) 題型:選擇題

不等式組的整數(shù)解共有( )

A.3個(gè) B.4個(gè) C.5個(gè) D.6個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年山東省九年級(jí)上學(xué)期期末調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分10分)

方法介紹:

同學(xué)們,生活中的很多實(shí)際問題,我們往往抽象成數(shù)學(xué)問題,然后通過數(shù)形結(jié)合建立數(shù)學(xué)模型的方式來解決.

例如:學(xué)校舉辦足球賽,共有五個(gè)球隊(duì)參加比賽,每個(gè)隊(duì)都要和其他各隊(duì)比賽一場(chǎng),問該學(xué)校一共要安排多少場(chǎng)比賽?

這是一個(gè)實(shí)際問題,我們可以在平面內(nèi)畫出5個(gè)點(diǎn)(任意3個(gè)點(diǎn)都不在同一條直線上),如圖①所示,其中每個(gè)點(diǎn)各代表一個(gè)足球隊(duì),兩個(gè)隊(duì)之間比賽一場(chǎng)就用一條線段把他們連起來,其中連接線段的條數(shù)就是安排比賽的場(chǎng)數(shù).這樣模型就建立起來了,如何解決這個(gè)模型呢?由于每個(gè)隊(duì)都要與其他各隊(duì)比賽一場(chǎng),即每個(gè)點(diǎn)都要與另外4點(diǎn)連接一條線段,這樣5個(gè)點(diǎn)應(yīng)該有5×4=20條線段,而每?jī)蓚(gè)點(diǎn)之間的線段都重復(fù)計(jì)算了一次,實(shí)際只有10條線段,所以學(xué)校一共要安排10場(chǎng)比賽.

學(xué)以致用:

(1)根據(jù)圖②回答:如果有6個(gè)班級(jí)的足球隊(duì)參加比賽,學(xué)校一共要安排 場(chǎng)比賽;

(2)根據(jù)規(guī)律,如果有n個(gè)班級(jí)的足球隊(duì)參加比賽,學(xué)校一共要安排 場(chǎng)比賽.

問題解決:

(1)小明今年參加了學(xué)校新組建的合唱隊(duì),老師讓所有人每?jī)扇讼嗷ノ帐郑J(rèn)識(shí)彼此(每?jī)扇酥g不重復(fù)握手).小明發(fā)現(xiàn)所有人握手次數(shù)總和為91次,那么合唱隊(duì)有多少人?

(2)A、B、C、D、E、F六人參加一次會(huì)議,見面時(shí)他們相互握手問好,每?jī)扇酥g不重復(fù)握手,如圖③,已知A已經(jīng)握了5次,B已經(jīng)握了4次,C已經(jīng)握了3次,D已經(jīng)握了2次,E已經(jīng)握了1次,請(qǐng)利用圖③分析F已經(jīng)和哪些人握手了.

問題拓展:

根據(jù)上述模型的建立和問題的解決,請(qǐng)你提出一個(gè)問題,并進(jìn)行解答.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年山東省九年級(jí)上學(xué)期期末調(diào)研數(shù)學(xué)試卷(解析版) 題型:填空題

小明身高1. 8 m ,王鵬身高1.50 m ,他們?cè)谕粫r(shí)刻站在陽光下,小明影子長(zhǎng)為1.20 m ,

則王鵬的影長(zhǎng)為 m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年山東省九年級(jí)上學(xué)期期末調(diào)研數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,在方格紙中,△ABC和△EPD的頂點(diǎn)均在格點(diǎn)上,要使△ABC∽△EPD,則點(diǎn)P所在的格點(diǎn)為( )

A.P4 B.P3 C.P2 D.P1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


直線l1∥l2,一塊含45°角的直角三角板如圖所示放置,∠1=85°,則∠2=          .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省如皋市九年級(jí)12月階段測(cè)試數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,在邊長(zhǎng)10cm為的正方形ABCD中,P為AB邊上任意一點(diǎn)(P不與A、B兩點(diǎn)重合),連結(jié)DP,過點(diǎn)P作PE⊥DP,垂足為P,交BC于點(diǎn)E,則BE的最大長(zhǎng)度為 cm。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,線段AB=4,點(diǎn)O是線段AB上一點(diǎn),C、D分別是線段OA、OB的中點(diǎn),小明據(jù)此很輕松地求得CD=2.他在反思過程中突發(fā)奇想:若點(diǎn)O運(yùn)動(dòng)到AB的延長(zhǎng)線上時(shí),原有的結(jié)論“CD=2”是否仍然成立?請(qǐng)幫小明畫出圖形并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年福建省長(zhǎng)汀縣城區(qū)三校九年級(jí)12月聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

(10分)如圖,利用一面墻(長(zhǎng)度不限),用24m長(zhǎng)的籬笆,圍成一個(gè)面積為70m2的長(zhǎng)方形場(chǎng)地.求長(zhǎng)方形的長(zhǎng)和寬

查看答案和解析>>

同步練習(xí)冊(cè)答案