【答案】
分析:根據(jù)△=4m
2-4×(-3)=4m
2+12>0,根據(jù)△的意義對①進行判斷;由a=1>0得拋物線開口向上,拋物線對稱軸為直線x=-
=m,由于當(dāng)x≤1時y隨x的增大而減小,則直線x=1在直線x=m的左側(cè),于是可對②進行判斷;配方得到y(tǒng)=(x-m)
2-m
2-3,則拋物線向左平移3個單位的解析式為y=(x-m+3)
2-m
2-3,把原點坐標(biāo)代入計算出m的值,則可對③進行判斷;根據(jù)拋物線的對稱性由當(dāng)x=4時的函數(shù)值與x=2時的函數(shù)值相等得到拋物線的對稱軸為直線x=3,則m=3,所以拋物線解析式為y=x
2-6x-3,然后計算x=6時的函數(shù)值,則可對④進行判斷.
解答:解:∵△=4m
2-4×(-3)=4m
2+12>0,∴拋物線與x軸有兩個公共點,所以①正確;
∵a=1>0,∴拋物線開口向上,拋物線對稱軸為直線x=-
=m,當(dāng)在對稱軸左側(cè)時,y隨x的增大而減小,而當(dāng)x≤1時y隨x的增大而減小,∴m≥1,所以②錯誤;
∵y=(x-m)
2-m
2-3,∴拋物線向左平移3個單位的解析式為y=(x-m+3)
2-m
2-3,把(0,O)代入得(m-3)
2-m
2-3=0,解得m=1,所以③錯誤;
∵當(dāng)x=4時的函數(shù)值與x=2時的函數(shù)值相等,∴拋物線的對稱軸為直線x=3,則x=m=3,∴拋物線解析式為y=x
2-6x-3,當(dāng)x=6時的函數(shù)值為-3,所以④正確.
故選B.
點評:本題考查了二次函數(shù)的圖象與系數(shù)的關(guān)系:二次函數(shù)y=ax
2+bx+c(a≠0)的圖象為拋物線,當(dāng)a>0,拋物線開口向上;對稱軸為直線x=-
,拋物線頂點坐標(biāo)為(-
,
);拋物線與y軸的交點坐標(biāo)為(0,c);當(dāng)b
2-4ac>0,拋物線與x軸有兩個交點;當(dāng)b
2-4ac=0,拋物線與x軸有一個交點;當(dāng)b
2-4ac<0,拋物線與x軸沒有交點.