【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A,B兩點,其中點A(﹣1,0),點C(0,5),點D(1,8)都在拋物線上,M為拋物線的頂點.

(1)求拋物線的函數(shù)解析式;
(2)求△MCB的面積;
(3)根據(jù)圖形直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.

【答案】
(1)解:∵A(﹣1,0),C(0,5),D(1,8)三點在拋物線y=ax2+bx+c上,

解方程組得

∴拋物線的解析式為y=﹣x2+4x+5


(2)解:連接OM,如圖,

∵y=﹣x2+4x+5=﹣(x﹣2)2+9,

∴M(2,9),

∵拋物線的對稱軸為直線x=2,

∴B(5,0),

∴SBCM=SOCM+SBOM﹣SOBC

= ×5×2+ ×5×9﹣ ×5×5

=15


(3)解:x<0或x>2
【解析】(1)把A點、C點和D點坐標代入y=ax2+bx+c得到關(guān)于a、b、c的方程組,然后解方程求出a、b、c即可得到拋物線解析式;(2)連接OM,如圖,先把(1)中解析式配成頂點式得到M(2,9),再利用對稱性得到B(5,0),然后利用SBCM=SOCM+SBOM﹣SOBC進行計算;(3)觀察函數(shù)圖象,寫出一次函數(shù)圖象在拋物線上方所對應(yīng)的自變量的范圍即可.
【考點精析】根據(jù)題目的已知條件,利用拋物線與坐標軸的交點的相關(guān)知識可以得到問題的答案,需要掌握一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:平面直角坐標系中,四邊形OABC的頂點分別為O(0,0)、A(5,0)、B(m,2)、C(m﹣5,2).
(1)問:是否存在這樣的m,使得在邊BC上總存在點P,使∠OPA=90°?若存在,求出m的取值范圍;若不存在,請說明理由.
(2)當∠AOC與∠OAB的平分線的交點Q在邊BC上時,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:關(guān)于x的方程x2+(8﹣4m)x+4m2=0
(1)若方程有兩個相等的實數(shù)根,求m的值,并求出此時方程的根;
(2)是否存在實數(shù)m,使方程的兩個實數(shù)根的平方和等于136?若存在,請求出滿足條件的m值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=4,點E是BC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點B′處.當△CEB′為直角三角形時,BE的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們可以通過類比聯(lián)想,引申拓展研究典型題目,可達到解一題知一類的目的,下面是一個案例,請補充完整
原題:如圖1,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說明理由.

(1)思路梳理
∵AB=AD,
∴把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,點F、D、G共線.
根據(jù) , 易證△AFG≌ , 得EF=BE+DF.
(2)類比引申
如圖2,四邊形ABCD中,AB=AD,∠BAD=90°點E、F分別在邊BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,則當∠B與∠D滿足等量關(guān)系時,仍有EF=BE+DF.
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點D、E均在邊BC上,且∠DAE=45°.猜想BD、DE、EC應(yīng)滿足的等量關(guān)系,并寫出推理過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A在雙曲線y= 上,點B在雙曲線y= (k≠0)上,AB∥x軸,分別過點A、B向x軸作垂線,垂足分別為D、C,若矩形ABCD的面積是8,則k的值為( )

A.12
B.10
C.8
D.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校在落實國家“營養(yǎng)餐”工程中,選用了A,B,C,D種不同類型的套餐.實行一段時間后,學校決定在全校范圍內(nèi)隨機抽取部分學生對“你喜歡的套餐類型(必選且只選一種)”進行問卷調(diào)查,將調(diào)查情況整理后,繪制成如圖所示的兩個統(tǒng)計圖.

請你根據(jù)以上信息解答下列問題:
(1)在這次調(diào)查中,一共抽取了名學生;
(2)請補全條形統(tǒng)計圖;
(3)如果全校有1200名學生,請你估計其中喜歡D套餐的學生的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點P在第一象限,⊙P與x軸相切于點Q,與y軸交于M(0,2),N(0,8)兩點,則點P的坐標是(
A.(5,3)
B.(3,5)
C.(5,4)
D.(4,5)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在扇形OAB中,C是OA的中點,CD⊥OA,CD與 交于點D,以O(shè)為圓心,OC的長為半徑作 交OB于點E,若OA=4,∠AOB=120°,則圖中陰影部分的面積為 . (結(jié)果保留π)

查看答案和解析>>

同步練習冊答案