(2007•太原)二次函數(shù):y=x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(-1,0)、B(3,0)兩點(diǎn),其頂點(diǎn)坐標(biāo)是   
【答案】分析:方法一:用待定系數(shù)法求b,c的值,得到二次函數(shù)的解析式:y=x2-2x-3,利用頂點(diǎn)公式求出頂點(diǎn)坐標(biāo)(1,-4);
方法二:或者利用交點(diǎn)式y(tǒng)=a(x-x1)(x-x2),求出解析式y(tǒng)=(x+1)(x-3),然后求出頂點(diǎn)坐標(biāo)(1,-4).
解答:解:解法一:
把A(-1,0)、B(3,0)代入y=x2+bx+c,
得:,
解得,
則函數(shù)解析式為y=x2-2x-3,
∴頂點(diǎn)坐標(biāo)為(1,-4);

解法二:
已知拋物線與x軸兩交點(diǎn)為A(-1,0)、B(3,0),
由“交點(diǎn)式”,得拋物線解析式為y=(x+1)(x-3),
整理,得y=x2-2x-3,
∴頂點(diǎn)坐標(biāo)為(1,-4).
點(diǎn)評(píng):本題考查了用待定系數(shù)法求函數(shù)解析式的方法,同時(shí)還考查了方程組的解法等知識(shí),難度不大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2007年山西省太原市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2007•太原)二次函數(shù):y=x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(-1,0)、B(3,0)兩點(diǎn),其頂點(diǎn)坐標(biāo)是   

查看答案和解析>>

同步練習(xí)冊(cè)答案