【題目】如圖,四邊形ABCD中,兩對角線相交于E,且E為對角線BD的中點,∠DAE=30°,∠BCE=120°.若CE=1,BC=2,則AC的長為

【答案】6
【解析】解:如圖,延長BC交AD的延長線于F,在AE上取一點K,使得EK=CE,連接DK、BK.
∵DE=BE,EK=CE,
∴四邊形CDKB是平行四邊形,
∴DK=BC=2,DK∥BF,
∵∠ACB=120°,
∴∠FCA=180°﹣120°=60°,
∵∠DAC=30°,
∴∠F=90°,
∵DK∥BF,
∴∠ADK=∠F=90°,∵∠DAK=30°,
∴AK=2DK=4,
∴AC=AK+EK+CE=4+1+1=6,
所以答案是6.
【考點精析】認(rèn)真審題,首先需要了解平行四邊形的判定與性質(zhì)(若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積),還要掌握相似三角形的判定與性質(zhì)(相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的奇函數(shù)f(x)滿足f(x+1)=f(﹣x),當(dāng)x∈(0, ]時,f(x)= (1﹣x),則f(x)在區(qū)間(1, )內(nèi)是(
A.減函數(shù)且f(x)>0
B.減函數(shù)且f(x)<0
C.增函數(shù)且f(x)>0
D.增函數(shù)且f(x)<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,關(guān)于x的不等式f2(x)+af(x)>0只有兩個整數(shù)解,則實數(shù)a的取值范圍為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=15cm,點O在中線CD上,設(shè)OC=xcm,當(dāng)半徑為3cm的⊙O與△ABC的邊相切時,x=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,將一個邊長為2的正方形ABCD和一個長為2、寬為1的矩形CEFD拼在一起,構(gòu)成一個大的矩形ABEF,現(xiàn)將小矩形CEFD繞點C順時針旋轉(zhuǎn),得到矩形CE′F′D′,旋轉(zhuǎn)角為α.

(1)當(dāng)點D′恰好落在EF邊上時,求旋轉(zhuǎn)角α的值;
(2)如圖2,G為BC的中點,且0°<α<90°,求證:GD′=E′D;

(3)小矩形CEFD繞點C順時針旋轉(zhuǎn)一周的過程中,△DCD′與△CBD′能否全等?若能,直接寫出旋轉(zhuǎn)角α的值;若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,AB=AC=5.
(1)如圖1,若sin∠BAC= ,求SABC;

(2)若BC=AC,延長BC到D,使CD=BC,點M為BC上一點,連接AM并延長到P,使∠APD=∠B,延長AC交PD于N,連接MN.
①如圖2,求證:AM=MN;
②如圖3,當(dāng)PC⊥BC時,則CN的長為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD于點E,DA平分∠BDE.
(1)求證:AE是⊙O的切線;
(2)如果AB=4,AE=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,建筑物AB后有一座假山,其坡度為i=1:,山坡上E點處有一涼亭,測得假山坡腳C與建筑物水平距離BC=25米,與涼亭距離CE=20米,某人從建筑物頂端測得E點的俯角為45°,求建筑物AB的高.(注:坡度i是指坡面的鉛直高度與水平寬度的比)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列一組圖形,其中圖形①中共有2顆星,圖形②中共有6顆星,圖形③中共有11顆星,圖形④中共有17顆星,…,按此規(guī)律,圖形⑧中星星的顆數(shù)是( 。

A.43
B.45
C.51
D.53

查看答案和解析>>

同步練習(xí)冊答案