【題目】如圖,二次函數(shù)y1=﹣x2+bx+c的圖象與x軸、y軸分別交于點A(﹣1,0)和點B(0,2),圖象的對稱軸交x軸于點C,一次函數(shù)y2=mx+n的圖象經(jīng)過點B、C.
(1)求二次函數(shù)的解析式y1和一次函數(shù)的解析式y2;
(2)點P在x軸下方的二次函數(shù)圖象上,且S△ACP=33,求點P的坐標;
(3)結合圖象,求當x取什么范圍的值時,有y1≤y2.
【答案】(1)y1=﹣x2+x+2,y2=﹣x+2;(2)P的坐標為(10,﹣22)和(﹣6,﹣22);(3)當x≤0或x≥時,有y1≤y2
【解析】
(1)將點B、C代入,可求得拋物線的解析式,從而得出點C的坐標,再將點B、C代入直線,可得直線解析式;
(2)P到x的距離為h,根據(jù)△ACP的面積,可求得h的值,從而確定點P的坐標;
(3)聯(lián)立二次函數(shù)和一次函數(shù),得到交點坐標,根據(jù)圖像得出不等式解集.
(1)將點A(﹣1,0)和點B(0,2)代入y1=﹣x2+bx+c,得:,
解得:,
∴二次函數(shù)的解析式為y1=﹣x2+x+2.
∵二次函數(shù)的對稱軸為直線x=﹣=2,
∴C(2,0),
∵一次函數(shù)y2=mx+n的圖象經(jīng)過點B、C,
∴,解得,
∴一次函數(shù)的解析式為y2=﹣x+2.
(2)設P到x的距離為h,
∵A(﹣1,0),C(2,0),
∴AC=3,
∵S△ACP=33,
∴ACh=33,
∴h=22,
∴P的縱坐標為﹣22,
把y=﹣22代入y1=﹣x2+x+2得,﹣22=﹣x2+x+2,
解得x=10或x=﹣,
∴P的坐標為(10,﹣22)和(﹣6,﹣22);
(3)解得或,
∴拋物線與直線的另一個交點為(,﹣),
由圖象可知,當x≤0或x≥時,有y1≤y2.
科目:初中數(shù)學 來源: 題型:
【題目】為了改進銀行的服務質(zhì)量,隨機抽隨機抽查了名顧客,統(tǒng)計了顧客在窗口辦理業(yè)務所用的時間(單位:分鐘)下圖是這次調(diào)查得到的統(tǒng)計圖。
請你根據(jù)圖中的信息回答下列問題:
(1)求辦理業(yè)務所用的時間為分鐘的人教;
(2)補全條形統(tǒng)計圖;
(2)求這名顧客辦理業(yè)務所用時間的平均數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學八年級組織了一次“漢字聽寫比賽”,每班選25名同學參加比賽,成績分為A,B,C,D四個等級,其中A等級得分為100分,B等級得分為85分,C等級得分為75分,D等級得分為60分,語文教研組將八年級一班和二班的成績整理并繪制成如下的統(tǒng)計圖,請根損換供的信息解答下列問題.
(1)把一班比賽成統(tǒng)計圖補充完整;
(2)填表:
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
一班 | a | b | 85 |
二班 | 84 | 75 | c |
表格中:a=______,b=______,c=_______.
(3)請從以下給出的兩個方面對這次比賽成績的結果進行分析:
①從平均數(shù)、眾數(shù)方面來比較一班和二班的成績;
②從B級以上(包括B級)的人數(shù)方面來比較-班和二班的成績.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】西南大學附中初2020級小李同學想利用學過的知識測量棵樹的高度,假設樹是豎直生長的,用圖中線段AB表示,小李站在C點測得∠BCA=45°,小李從C點走4米到達了斜坡DE的底端D點,并測得∠CDE=150°,從D點上斜坡走了8米到達E點,測得∠AED=60°,B,C,D在同一水平線上,A、B、C、D、E在同一平面內(nèi),則大樹AB的高度約為( 。┟祝ńY果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73)
A.24.3B.24.4C.20.3D.20.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是由邊長為1的小正方形組成的網(wǎng)格,直線是一條網(wǎng)格線,點,在格點上,的三個頂點都在格點(網(wǎng)格線的交點)上.
(1)作出關于直線對稱的;
(2)在直線上畫出點,使四邊形的周長最。
(3)在這個網(wǎng)格中,到點和點的距離相等的格點有_________個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在和中,,,連接,,繞點自由旋轉.
(1)當在邊上時,
①線段和線段的關系是____________________;
②若,則的度數(shù)為____________;
(2)如圖2,點不在邊上,,相交于點,(l)問中的線段和線段的關系是否仍然成立?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,拋物線y=x2﹣x﹣3交軸于A、B兩點,交y軸于點C,點D為點C關于拋物線對稱軸的對稱點.
(1)若點P是拋物線上位于直線AD下方的一個動點,在y軸上有一動點E,x軸上有一動點F,當△PAD的面積最大時,一動點G從點P出發(fā)以每秒1個單位的速度沿P→E→F的路徑運動到點F,再沿線段FB以每秒2個單位的速度運動到B點后停止,當點F的坐標是多少時,動點G的運動過程中所用的時間最少?
(2)如圖②,在(1)問的條件下,將拋物線沿直線PB進行平移,點P、B平移后的對應點分別記為點P'、B',請問在y軸上是否存在一動點Q,使得△P'QB'為等腰直角三角形?若存在,請直接寫出所有符合條件的Q點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD的外側作等腰△ABE,AE=BE,連接ED、EC.
(1)求證:ED=EC.
(2)用無刻度的直尺作出△EDC中DC邊上的高EH.(不寫作法,保留作圖的痕跡)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形紙片中,,折疊紙片,使點剛好落在線段上,且折痕分別于相交,設折疊后點的對應點分別為點,折痕分別于相交于點,則線段的取值范圍是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com