【題目】圖①是我們常見的地磚上的圖案,其中包含了一種特殊的平面圖形﹣正八邊形.

(1)如圖②,AE是⊙O的直徑,用直尺和圓規(guī)作⊙O的內(nèi)接正八邊形ABCDEFGH(不寫作法,保留作圖痕跡);
(2)在(1)的前提下,連接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一個圓錐的側(cè)面,則這個圓錐底面圓的半徑等于

【答案】
(1)

解:如圖所示,八邊形ABCDEFGH即為所求


(2)
【解析】(1)作AE的垂直平分線交⊙O于C,G,作∠AOG,∠EOG的角平分線,分別交⊙O于H,F(xiàn),反向延長 FO,HO,分別交⊙O于D,B順次連接A,B,C,D,E,F(xiàn),G,H,八邊形ABCDEFGH即為所求;
(2)由八邊形ABCDEFGH是正八邊形,求得∠AOD=3=135°得到的長=,設(shè)這個圓錐底面圓的半徑為R,根據(jù)圓的周長的公式即可求得結(jié)論.
【考點(diǎn)精析】通過靈活運(yùn)用正多邊形和圓和圓錐的相關(guān)計(jì)算,掌握圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它的內(nèi)對角;圓的外切四邊形的兩組對邊的和相等;圓錐側(cè)面展開圖是一個扇形,這個扇形的半徑稱為圓錐的母線;圓錐側(cè)面積S=πrl;V圓錐=1/3πR2h.即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值 (a﹣ )( ﹣1)÷ ,其中a,b分別為關(guān)于x的一元二次方程x2 x+1=0的兩個根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為開拓學(xué)生視野,開展“課外讀書周”活動,活動后期隨機(jī)調(diào)查了九年級部分學(xué)生一周的課外閱讀時間,并將結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)統(tǒng)計(jì)圖的信息回答下列問題:

(1)本次調(diào)查的學(xué)生總數(shù)為____人,被調(diào)查學(xué)生的課外閱讀時間的中位數(shù)是___小時,眾數(shù)是___小時;
(2)請你補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,課外閱讀時間為5小時的扇形的圓心角度數(shù)是;
(4)若全校九年級共有學(xué)生700人,估計(jì)九年級一周課外閱讀時間為6小時的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)L1:y=ax2-2ax+a+3(a>0)和二次函數(shù)L2:y=-a(x+1)2+1(a>0)圖象的頂點(diǎn)分別為M,N,與y軸分別交于點(diǎn)E,F(xiàn).

(1)函數(shù)y=ax2-2ax+a+3(a>0)的最小值為  , 當(dāng)二次函數(shù)L1 , L2的y值同時隨著x的增大而減小時,x的取值范圍是
(2)當(dāng)EF=MN時,求a的值,并判斷四邊形ENFM的形狀(直接寫出,不必證明).
(3)若二次函數(shù)L2的圖象與x軸的右交點(diǎn)為A(m,0),當(dāng)△AMN為等腰三角形時,求方程-a(x+1)2+1=0的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)計(jì)算:﹣(﹣π)0﹣2sin60°
(2)化簡:(1+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(diǎn)(0,3),且當(dāng)x=1時,y有最小值2.

(1)求a,b,c的值
(2)設(shè)二次函數(shù)y=k(2x+2)﹣(ax2+bx+c)(k為實(shí)數(shù)),它的圖象的頂點(diǎn)為D.
①當(dāng)k=1時,求二次函數(shù)y=k(2x+2)﹣(ax2+bx+c)的圖象與x軸的交點(diǎn)坐標(biāo);
②請?jiān)诙魏瘮?shù)y=ax2+bx+c與y=k(2x+2)﹣(ax2+bx+c)的圖象上各找出一個點(diǎn)M,N,不論k取何值,這兩個點(diǎn)始終關(guān)于x軸對稱,直接寫出點(diǎn)M,N的坐標(biāo)(點(diǎn)M在點(diǎn)N的上方);
③過點(diǎn)M的一次函數(shù)y=﹣x+t的圖象與二次函數(shù)y=ax2+bx+c的圖象交于另一點(diǎn)P,當(dāng)k為何值時,點(diǎn)D在∠NMP的平分線上?
④當(dāng)k取﹣2,﹣1,0,1,2時,通過計(jì)算,得到對應(yīng)的拋物線y=k(2x+2)﹣(ax2+bx+c)的頂點(diǎn)分別為(﹣1,﹣6,),(0,﹣5),(1,﹣2),(2,3),(3,10),請問:頂點(diǎn)的橫、縱坐標(biāo)是變量嗎?縱坐標(biāo)是如何隨橫坐標(biāo)的變化而變化的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O的直徑AB=12cm,AC是⊙O的弦,過點(diǎn)C作⊙O的切線交BA的延長線于點(diǎn)P,連接BC.

(1)求證:∠PCA=∠B
(2)已知∠P=40°,點(diǎn)Q在優(yōu)弧ABC上,從點(diǎn)A開始逆時針運(yùn)動到點(diǎn)C停止(點(diǎn)Q與點(diǎn)C不重合),當(dāng)△ABQ與△ABC的面積相等時,求動點(diǎn)Q所經(jīng)過的弧長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)解方程:x2﹣2x﹣3=0;
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為2,△ABC是⊙O的內(nèi)接三角形,連接OB、OC.若∠BAC與∠BOC互補(bǔ),則弦BC的長為(

A.4
B.3
C.2
D.

查看答案和解析>>

同步練習(xí)冊答案