精英家教網 > 初中數學 > 題目詳情

【題目】在等邊△ABC中,EBC邊上一點,GBC延長線上一點,過點E作∠AEM60°,交∠ACG的平分線于點M

1)如圖1,當點EBC邊的中點位置時,求證:AEEM;

2)如圖2,當點EBC邊的任意位置時,(1)中的結論是否成立?請說明理由.

【答案】1)見解析;(21)中的結論成立,理由見解析.

【解析】

1)取AB的中點N,連接EN,可證明△ANE≌△ECM,可證得AEEM

2AB上取點H,使BHBE,根據等邊三角形的證明△AHE≌△ECM即可求解.

1)證明:取AB的中點N,連接EN,

∵△ABC為等邊三角形,EN為中點,

AEBC,且AE平分∠BAC,

ANNEEC,∠NAE=∠NEA30°,∴∠ANE120°,

∵∠AEM60°,∴∠MEC30°,∴∠NAE=∠CEM,

CM平分∠ACG,∴∠ACM60°,∴∠ECM=∠ANE120°,

在△ANE和△ECM中,,∴△ANE≌△ECMASA),

AEEM;

2)在AB上取點H,使BHBE,

∵△ABC是等邊三角形,∴ABBC,∠B60°.

BHBE,∴AHCE

∴△BHE是等邊三角形,∴∠BHE60°.∴∠AHE120°.

∵∠ECM120°.∴∠AHE=∠ECM

∵∠AEM+MEC=ABC+EAH,∴∠EAH=MEC

在△AHE和△ECM,∴△AHE≌△ECMASA).

AEEM

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖1,在RtABC中,∠A=90°,AB=AC,點D,E分別在邊ABAC上,AD=AE,連接DC,點M,P,N分別為DEDC,BC的中點.

(1)觀察猜想

1中,線段PMPN的數量關系是 ,位置關系是 ;

(2)探究證明

ADE繞點A逆時針方向旋轉到圖2的位置,連接MN,BD,CE,判斷PMN的形狀,并說明理由;

(3)拓展延伸

ADE繞點A在平面內自由旋轉,若AD=4,AB=10,請直接寫出PMN面積的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】李老師為了了解學生暑期在家的閱讀情況,隨機調查了20名學生某一天的閱讀小時數,具體情況統(tǒng)計如下:

閱讀時間

(小時)

2

2.5

3

3.5

4

學生人數(名)

1

2

8

6

3

則關于這20名學生閱讀小時數的說法正確的是( 。

A. 眾數是8 B. 中位數是3 C. 平均數是3 D. 方差是0.34

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知ABCDEC是兩個大小不同的等腰直角三角形.

(1)如圖所示,連接AE,DB,試判斷線段AEDB的數量和位置關系,并說明理由;

(2)如圖所示,連接DB,將線段DBD點順時針旋轉90°DF,連接AF,試判斷線段DEAF的數量和位置關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,ADBC邊上的中線,EAB邊上一點,過點CCFABED的延長線于點F

1)求證:△BDE≌△CDF

2)當ADBC,AE2CF4時,求AC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知是正方形內一點,以點為旋轉中心,將按順時針方向旋轉使點與點重合,這時點旋轉到點.

的長為,的長為,在圖中用陰影標出旋轉到的過程中,邊所掃過區(qū)域的面積,并用含、的式子表示它________;

,,,連接,試猜想的形狀,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線yx2與拋物線yax2bx6(a≠0)相交于點A(, )B(4,m),點P是線段AB上異于A,B的動點,過點PPCx軸于點D,交拋物線于點C.

(1)求拋物線的解析式;

(2)是否存在這樣的P點,使線段PC的長有最大值?若存在,求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】ABC中,AB=AC,DBABC的中線,且BDABC周長分為12cm15cm兩部分,求三角形各邊長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長恰與另一塊等腰直角三角板ODC的斜邊OC的長相等,把這兩塊三角板放置在平面直角坐標系中,且OB=3.

(1)若某反比例函數的圖象的一個分支恰好經過點A,求這個反比例函數的解析式;

(2)若把含30°角的直角三角板繞點O按順時針方向旋轉后,斜邊OA恰好落在x軸上,點A落在點A′處,試求圖中陰影部分的面積.(結果保留π)

【答案】(1)反比例函數的解析式為y=;(2)S陰影=6π-.

【解析】分析:(1)根據tan30°=,求出AB,進而求出OA,得出A的坐標,設過A的雙曲線的解析式是y=,把A的坐標代入求出即可;(2)求出∠AOA′,根據扇形的面積公式求出扇形AOA′的面積,求出OD、DC長,求出△ODC的面積,相減即可求出答案.

本題解析:

(1)在Rt△OBA中,∠AOB=30°,OB=3,

∴AB=OB·tan 30°=3.

∴點A的坐標為(3,3).

設反比例函數的解析式為y= (k≠0),

∴3,∴k=9,則這個反比例函數的解析式為y=.

(2)在Rt△OBA中,∠AOB=30°,AB=3,

sin ∠AOB=,即sin 30°=

∴OA=6.

由題意得:∠AOC=60°,S扇形AOA′=6π.

Rt△OCD中,∠DOC=45°,OC=OB=3,

∴OD=OC·cos 45°=3×.

∴SODCOD2.

∴S陰影=S扇形AOA′-SODC=6π.

點睛:本題考查了勾股定理、待定系數法求函數解析式、特殊角的三角函數值、扇形的面積及等腰三角形的性質,本題屬于中檔題,難度不大,將不規(guī)則的圖形的面積表示成多個規(guī)則圖形的面積之和是解答本題的關鍵.

型】解答
束】
26

【題目】矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點B落在CD邊上的點P處.

(1)如圖①,已知折痕與邊BC交于點O,連接AP,OP,OA.

① 求證:△OCP∽△PDA;

② 若△OCP與△PDA的面積比為1:4,求邊AB的長.

(2)如圖②,在(1)的條件下,擦去AO和OP,連接BP.動點M在線段AP上(不與點P,A重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問動點M,N在移動的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.

查看答案和解析>>

同步練習冊答案