【題目】在等邊△ABC中,E為BC邊上一點,G為BC延長線上一點,過點E作∠AEM=60°,交∠ACG的平分線于點M.
(1)如圖1,當點E在BC邊的中點位置時,求證:AE=EM;
(2)如圖2,當點E在BC邊的任意位置時,(1)中的結論是否成立?請說明理由.
【答案】(1)見解析;(2)(1)中的結論成立,理由見解析.
【解析】
(1)取AB的中點N,連接EN,可證明△ANE≌△ECM,可證得AE=EM;
(2)在AB上取點H,使BH=BE,根據等邊三角形的證明△AHE≌△ECM即可求解.
(1)證明:取AB的中點N,連接EN,
∵△ABC為等邊三角形,E,N為中點,
∴AE⊥BC,且AE平分∠BAC,
∴AN=NE=EC,∠NAE=∠NEA=30°,∴∠ANE=120°,
∵∠AEM=60°,∴∠MEC=30°,∴∠NAE=∠CEM,
∵CM平分∠ACG,∴∠ACM=60°,∴∠ECM=∠ANE=120°,
在△ANE和△ECM中,,∴△ANE≌△ECM(ASA),
∴AE=EM;
(2)在AB上取點H,使BH=BE,
∵△ABC是等邊三角形,∴AB=BC,∠B=60°.
∵BH=BE,∴AH=CE.
∴△BHE是等邊三角形,∴∠BHE=60°.∴∠AHE=120°.
∵∠ECM=120°.∴∠AHE=∠ECM.
∵∠AEM+∠MEC=∠ABC+∠EAH,∴∠EAH=∠MEC
在△AHE和△ECM中,∴△AHE≌△ECM(ASA).
∴AE=EM.
科目:初中數學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠A=90°,AB=AC,點D,E分別在邊AB,AC上,AD=AE,連接DC,點M,P,N分別為DE,DC,BC的中點.
(1)觀察猜想
圖1中,線段PM與PN的數量關系是 ,位置關系是 ;
(2)探究證明
把△ADE繞點A逆時針方向旋轉到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;
(3)拓展延伸
把△ADE繞點A在平面內自由旋轉,若AD=4,AB=10,請直接寫出△PMN面積的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】李老師為了了解學生暑期在家的閱讀情況,隨機調查了20名學生某一天的閱讀小時數,具體情況統(tǒng)計如下:
閱讀時間 (小時) | 2 | 2.5 | 3 | 3.5 | 4 |
學生人數(名) | 1 | 2 | 8 | 6 | 3 |
則關于這20名學生閱讀小時數的說法正確的是( 。
A. 眾數是8 B. 中位數是3 C. 平均數是3 D. 方差是0.34
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知△ABC與△DEC是兩個大小不同的等腰直角三角形.
(1)如圖①所示,連接AE,DB,試判斷線段AE和DB的數量和位置關系,并說明理由;
(2)如圖②所示,連接DB,將線段DB繞D點順時針旋轉90°到DF,連接AF,試判斷線段DE和AF的數量和位置關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AB邊上一點,過點C作CF∥AB交ED的延長線于點F.
(1)求證:△BDE≌△CDF.
(2)當AD⊥BC,AE=2,CF=4時,求AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知是正方形內一點,以點為旋轉中心,將按順時針方向旋轉使點與點重合,這時點旋轉到點.
設的長為,的長為,在圖中用陰影標出旋轉到的過程中,邊所掃過區(qū)域的面積,并用含、的式子表示它________;
若,,,連接,試猜想的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于點A(, ),B(4,m),點P是線段AB上異于A,B的動點,過點P作PC⊥x軸于點D,交拋物線于點C.
(1)求拋物線的解析式;
(2)是否存在這樣的P點,使線段PC的長有最大值?若存在,求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長恰與另一塊等腰直角三角板ODC的斜邊OC的長相等,把這兩塊三角板放置在平面直角坐標系中,且OB=3.
(1)若某反比例函數的圖象的一個分支恰好經過點A,求這個反比例函數的解析式;
(2)若把含30°角的直角三角板繞點O按順時針方向旋轉后,斜邊OA恰好落在x軸上,點A落在點A′處,試求圖中陰影部分的面積.(結果保留π)
【答案】(1)反比例函數的解析式為y=;(2)S陰影=6π-.
【解析】分析:(1)根據tan30°=,求出AB,進而求出OA,得出A的坐標,設過A的雙曲線的解析式是y=,把A的坐標代入求出即可;(2)求出∠AOA′,根據扇形的面積公式求出扇形AOA′的面積,求出OD、DC長,求出△ODC的面積,相減即可求出答案.
本題解析:
(1)在Rt△OBA中,∠AOB=30°,OB=3,
∴AB=OB·tan 30°=3.
∴點A的坐標為(3,3).
設反比例函數的解析式為y= (k≠0),
∴3=,∴k=9,則這個反比例函數的解析式為y=.
(2)在Rt△OBA中,∠AOB=30°,AB=3,
sin ∠AOB=,即sin 30°=,
∴OA=6.
由題意得:∠AOC=60°,S扇形AOA′==6π.
在Rt△OCD中,∠DOC=45°,OC=OB=3,
∴OD=OC·cos 45°=3×=.
∴S△ODC=OD2==.
∴S陰影=S扇形AOA′-S△ODC=6π-.
點睛:本題考查了勾股定理、待定系數法求函數解析式、特殊角的三角函數值、扇形的面積及等腰三角形的性質,本題屬于中檔題,難度不大,將不規(guī)則的圖形的面積表示成多個規(guī)則圖形的面積之和是解答本題的關鍵.
【題型】解答題
【結束】
26
【題目】矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點B落在CD邊上的點P處.
(1)如圖①,已知折痕與邊BC交于點O,連接AP,OP,OA.
① 求證:△OCP∽△PDA;
② 若△OCP與△PDA的面積比為1:4,求邊AB的長.
(2)如圖②,在(1)的條件下,擦去AO和OP,連接BP.動點M在線段AP上(不與點P,A重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問動點M,N在移動的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com