【題目】如圖,拋物線過點(diǎn)和點(diǎn),連結(jié)AB交y軸于點(diǎn)C.
(1)求拋物線的函數(shù)解析式;
(2)點(diǎn)P在線段AB下方的拋物線上運(yùn)動(dòng),連結(jié)AP,BP. 設(shè)點(diǎn)P的橫坐標(biāo)為m,△ABP的面積為s.
①求s與m的函數(shù)關(guān)系式;
②當(dāng)s取最大值時(shí),拋物線上是否存在點(diǎn)Q,使得S△ACQ=s. 若存在,求點(diǎn)Q的坐標(biāo);若不存在,說明理由.
【答案】(1);(2)①;②Q點(diǎn)坐標(biāo)為或.
【解析】
(1)直接把A、B代入解析式求解即可;
(2)①根據(jù)自變量與函數(shù)值的對(duì)應(yīng)關(guān)系,可得P點(diǎn)坐標(biāo),M點(diǎn)坐標(biāo),根據(jù)線段的和差,可得PM的長,A到PM的距離,B到PM的距離,根據(jù)三角形的面積公式,可得答案;
②由①得到點(diǎn)P坐標(biāo),根據(jù)S△ACQ=s,得到直線AB向上平移3個(gè)單位的直線,聯(lián)立和 即可得解.
(1)把點(diǎn)和點(diǎn)代入得:
,.
解得.
∴..
(2)∵,,
∴.
∵,.
∴
∴,即.
當(dāng)時(shí),最大值.
(2)當(dāng)△ABP的面積取最大值時(shí),P點(diǎn)坐標(biāo)為.
∴.
∵S△ACQ=S△ABP,∴S△AQB=2S△ABP,
∴可使直線AB向上平移3個(gè)單位長度,得
聯(lián)立,解得Q點(diǎn)坐標(biāo)為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,將直尺擺放在三角板上,使直尺與三角板的邊分別交于點(diǎn)D、E、F、G,∠CGD=42°,將直尺向下平移,使直尺的邊緣通過點(diǎn)B,交AC于點(diǎn)H,如圖②所示.
(1)∠CBH的大小為 度.
(2)點(diǎn)H、B的讀數(shù)分別為4、13.4,求BC的長.(結(jié)果精確到0.01)
(參考數(shù)據(jù):sin42°=0.67,cos42°=0.74,tan42°=0.90)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABO的頂點(diǎn)A是反比例函數(shù)y=與一次函數(shù)y=﹣x﹣(k+1)的圖象在第二象限的交點(diǎn),AB⊥x軸于B,且S△ABO=.
(1)直接寫出這兩個(gè)函數(shù)的關(guān)系式;
(2)求△AOC的面積;
(3)根據(jù)圖象直接寫出:當(dāng)x為何值時(shí),反比例函數(shù)的值小于一次函數(shù)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與x軸交于A、B兩點(diǎn),與軸交于點(diǎn),連接、.
(1)求拋物線的函數(shù)表達(dá)式;
(2)拋物線的對(duì)稱軸與x軸交于點(diǎn)D,連接,點(diǎn)E為第三象限拋物線上的一動(dòng)點(diǎn),,直線與拋物線交于點(diǎn)F,設(shè)直線的表達(dá)式為.
①如圖①,直線與拋物線對(duì)稱軸交于點(diǎn)G,若,求k、b的值;
②如圖②,直線與y軸交于點(diǎn)M,與直線交于點(diǎn)H,若,求b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知點(diǎn),,且、滿足,的邊與軸交于點(diǎn),且為中點(diǎn),雙曲線經(jīng)過、兩點(diǎn).
(1)求的值;
(2)點(diǎn)在雙曲線上,點(diǎn)在軸上,若以點(diǎn)、、、為頂點(diǎn)的四邊形是平行四邊形,試求滿足要求的所有點(diǎn)、的坐標(biāo);
(3)以線段為對(duì)角線作正方形(如圖,點(diǎn)是邊上一動(dòng)點(diǎn),是的中點(diǎn),,交于,當(dāng)在上運(yùn)動(dòng)時(shí),的值是否發(fā)生改變?若改變,求出其變化范圍;若不改變,請(qǐng)求出其值,并給出你的證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD邊長為1,以AB為直徑作半圓,點(diǎn)P是CD中點(diǎn),BP與半圓交于點(diǎn)Q,連接給出如下結(jié)論:;;;其中正確的結(jié)論是______填寫序號(hào)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且OA=OC.則下列結(jié)論:①abc<0;②>0;③ac-b+1=0;④OA·OB=-.其中結(jié)論正確的是____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)分別為A(0,1),B(-1,0),C(0,-1),D(1,0).對(duì)于圖形M,給出如下定義:P為圖形M上任意一點(diǎn),Q為正方形ABCD邊上任意一點(diǎn),如果P,Q兩點(diǎn)間的距離有最大值,那么稱這個(gè)最大值為圖形M的“正方距”,記作.
(1)已知點(diǎn),
①直接寫出的值;
②直線與x軸交于點(diǎn)F,當(dāng)取最小值時(shí),求k的取值范圍;
(2)的圓心為 ,半徑為1.若,直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,函數(shù)的圖象G經(jīng)過點(diǎn),直線與y軸交于點(diǎn)B,與圖象G交于點(diǎn)C.
(1)求m的值.
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).記圖象G在點(diǎn)A,C之間的部分與線段BA,BC圍成的區(qū)域(不含邊界)為W.
①當(dāng)直線l過點(diǎn)時(shí),直接寫出區(qū)域W內(nèi)的整點(diǎn)個(gè)數(shù).
②若區(qū)域W內(nèi)的整點(diǎn)不少于4個(gè),結(jié)合函數(shù)圖象,求k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com