【題目】解放橋是天津市的標志性建筑之一,是一座全鋼結(jié)構(gòu)的部分可開啟的橋梁,
(I)如圖①,已知解放橋可開啟部分的橋面的跨度AB等于47m,從AB的中點C處開啟,則AC開啟至A'C'的位置時,A'C'的長為 .
(II)如圖②,某校數(shù)學興趣小組要測量解放橋的全長PQ,在觀景平臺M處測得∠PMQ=54°,沿河岸MQ前行,在觀景平臺N處測得∠PNQ=73°。已知PQ⊥MQ,MN=40m,求解放橋的全長PQ(tan54°≈1.4,tan73°≈3.3,結(jié)果保留整數(shù))
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點C,D在⊙O上,且點C是的中點,過點 C作AD的垂線 EF交直線 AD于點 E.
(1)求證:EF是⊙O的切線;
(2)連接BC,若AB=5,BC=3,求線段AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y1=﹣x+4的圖象與反比例函數(shù)y2=的圖象交于A(2,3),B(6,n)兩點
(1)觀察圖象當y1>y2時,x的取值范圍是 ;
(2)求反比例函數(shù)的解析式及B點坐標;
(3)求△OAB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC.
(1)求AC的長;
(2)先將△ABC向右平移2個單位得到△A′B′C′,寫出A點的對應點A′的坐標;
(3)再將△ABC繞點C按逆時針方向旋轉(zhuǎn)90°后得到△A1B1C1,寫出A點對應點A1的坐標.
(4)求點A到A′所畫過痕跡的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸交于點,頂點坐標且開口向下,則下列結(jié)論:①拋物線經(jīng)過點;②;③關于的方程有兩個不相等的實數(shù)根;④對于任意實數(shù),總成立。其中結(jié)論正確的個數(shù)為( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且AC在直線l上,將△ABC繞點A順時針旋轉(zhuǎn)到①,可得到點P1;將位置①的三角形繞點P1順時針旋轉(zhuǎn)到位置②,可得到點P2;將位置②的三角形繞點P2順時針旋轉(zhuǎn)到位置③,可得到點P3,…按此規(guī)律繼續(xù)旋轉(zhuǎn),直到點P2012為止,則AP2012等于_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為弓形AB的弦,AB=2,弓形所在圓⊙O的半徑為2,點P為弧AB上動點,點I為△PAB的內(nèi)心,當點P從點A向點B運動時,點I移動的路徑長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖 1,在△ABC 中,∠ACB=90°,BC=AC,點 D 在 AB 上,DE⊥AB交 BC 于 E,點 F 是 AE 的中點
(1) 寫出線段 FD 與線段 FC 的關系并證明;
(2) 如圖 2,將△BDE 繞點 B 逆時針旋轉(zhuǎn)α(0°<α<90°),其它條件不變,線段 FD 與線段 FC 的關系是否變化,寫出你的結(jié)論并證明;
(3) 將△BDE 繞點 B 逆時針旋轉(zhuǎn)一周,如果 BC=4,BE=2,直接寫出線段 BF 的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線與x軸相交于A,B兩點,點P是拋物線上一點,且,.
求該拋物線的表達式;
設點為拋物線上的一個動點,當點M在曲線BA之間含端點移動時,求的最大值及取得最大值時點M的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com