【題目】為了解某市初中學(xué)生課外閱讀情況,調(diào)查小組對該市這學(xué)期初中學(xué)生閱讀課外書籍的冊數(shù)進行了抽樣調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下統(tǒng)計圖.

根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)本次抽樣調(diào)查的樣本容量是  ;

(2)補全條形統(tǒng)計圖;

(3)該市共有12000名初中生,估計該市初中學(xué)生這學(xué)期課外閱讀超過2冊的人數(shù).

【答案】(1)100;(2)補圖見解析;(3)3600人.

【解析】

(1)根據(jù)2冊的人數(shù)除以占的百分比即可得到總?cè)藬?shù);

(2)求出1冊的人數(shù)是100人,4冊的人數(shù)是100-30-40=10人,再畫出即可;

(3)先列出算式,再求出即可.

解:(1)(冊,

即本次抽樣調(diào)查的樣本容量是100,

故答案為:100;

(2)如圖:;

(3)(人,

答:估計該市初中學(xué)生這學(xué)期課外閱讀超過2冊的人數(shù)是3600人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,港口A在觀測站O的正東方向,OA=40海里,某船從港口A出發(fā),沿北偏東15°方向航行半小時后到達B處,此時從觀測站O處測得該船位于北偏東60°的方向.求該船航行的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在ABC中,ABC=90°,AB=3,BC=4.點Q是線段AC上的一個動點,過點Q作AC的垂線交線段AB(如圖1)或線段AB的延長線(如圖2)于點P.

(1)當點P在線段AB上時,求證:APQ∽△ABC;

(2)當PQB為等腰三角形時,求AP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀題.

材料一若一個整數(shù)m能表示成a2-b2(a,b為整數(shù))的形式,則稱這個數(shù)為完美數(shù)”.例如,3=22-12,9=32-02,12=42-22,3,9,12都是完美數(shù)”;再如,M=x2+2xy=(x+y)2-y2,(x,y是整數(shù)),所以M也是完美數(shù)”.

材料二:任何一個正整數(shù)n都可以進行這樣的分解:n=p×q(p、q是正整數(shù),且p≤q).如果p×qn的所有這種分解中兩因數(shù)之差的絕對值最小,我們就稱p×qn的最佳分解,并且規(guī)定F(n)=.例如18=1×18=2×9=3×6,這三種分解中36的差的絕對值最小,所以就有F(18)=.請解答下列問題:

(1)8______(填寫不是)一個完美數(shù),F(8)= ______.

(2)如果mn都是完美數(shù)”,試說明mn也是完美數(shù)”.

(3)若一個兩位數(shù)n的十位數(shù)和個位數(shù)分別為x,y(1≤x≤9),n完美數(shù)x+y能夠被8整除,求F(n)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一家公司14名員工的月薪(單位:元)是:

6000 7000 2550 1700 2550 4699 4200

2550 5100 2600 4400 25100 12400 2600

1)計算這組數(shù)據(jù)的平均數(shù)、中位數(shù)和眾數(shù);

2)解釋本題中平均數(shù)、中位數(shù)和眾數(shù)意義

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸交于點A、B,與y軸交于點C,點A的坐標為(-4,0),P是拋物線上一點 (點P與點A、B、C不重合).

(1)b=  ,點B的坐標是  ;

(2)設(shè)直線PB直線AC交于點M,是否存在這樣的點P,使得PM:MB=1:2?若存在,求出點P的橫坐標;若不存在,請說明理由;

(3)連接AC、BC,判斷∠CAB和∠CBA的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC繞點C順時針旋轉(zhuǎn)90°得到△EDC.若點A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是  

A. 55° B. 60° C. 65° D. 70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】.如圖,在平面直角坐標系中,以點C(1,1)為圓心,2為半徑作圓,交x軸于A,B兩點,點P在優(yōu)弧上.

(1)求出A,B兩點的坐標;

(2)試確定經(jīng)過A、B且以點P為頂點的拋物線解析式;

(3)在該拋物線上是否存在一點D,使線段OPCD互相平分?若存在,求出點D的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+4與x軸相交于A、B兩點,與y軸相交于點C,若已知A點的坐標為A(﹣2,0).

(1)求拋物線的解析式及它的對稱軸;

(2)求點C的坐標,連接AC、BC并求線段BC所在直線的解析式;

(3)在拋物線的對稱軸上是否存在點Q,使ACQ為等腰三角形?若存在,求出符合條件的Q點坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案