如圖,BE平分∠ABC,DE∥BC,圖中相等的角共有


  1. A.
    3對
  2. B.
    4對
  3. C.
    5對
  4. D.
    6對
C
分析:利用平行線的性質(zhì)和角平分線的定義找等角.
解答:∵DE∥BC,
∴∠DEB=∠EBC,∠ADE=∠ABC,∠AED=∠ACB,
又∵BE平分∠ABC,
∴∠ABE=∠EBC.
即∠ABE=DEB.
所以圖中相等的角共有5對.
故選C.
點評:這類題首先利用平行線的性質(zhì)確定內(nèi)錯角相等或同位角相等,然后根據(jù)角平分線定義得出其它相等的角.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

21、如圖,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求證:AB∥CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、如圖,∵BE平分∠ABC(已知)
∠ABC
=2∠1(角平分線的定義)
∵CE平分∠DCB(已知)
∠DCB
=2∠2(角平分線的定義)
∠ABC
+
∠DCB
=2∠1+2∠2=2(∠1+∠2)
又∵∠1+∠2=90°(已知)
∠ABC
+
∠DCB
=2×90°=180°,
AB
CD
同旁內(nèi)角互補,兩直線平行
).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,BE平分∠ABD,DE平分∠BDC,且BE⊥DE于E,那么AB∥CD嗎?( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

完成下面的證明:
已知:如圖.BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.
求證:AB∥CD.
證明:∵DE平分∠BDC(已知),
∴∠BDC=2∠1(
角平分線的定義
角平分線的定義
).
∵BE平分∠ABD(已知),
∴∠ABD=
2∠2
2∠2
(角的平分線的定義).
∴∠BDC+∠ABD=2∠1+2∠2=2(∠1+∠2)(
等量代換
等量代換
).
∵∠1+∠2=90°(已知),
∴∠ABD+∠BDC=
180°
180°
等式的性質(zhì)
等式的性質(zhì)
).
∴AB∥CD(
同旁內(nèi)角互補兩直線平行
同旁內(nèi)角互補兩直線平行
).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求證:AB∥CD.

查看答案和解析>>

同步練習冊答案