【題目】已知:在矩形ABCD中,AB=10,BC=12,四邊形EFGH的三個頂點E、F、H分別在矩形ABCD邊AB、BC、DA上,AE=2.
(1)如圖①,當(dāng)四邊形EFGH為正方形時,求△GFC的面積;
(2)如圖②,當(dāng)四邊形EFGH為菱形,且BF=a時,求△GFC的面積(用a表示);
(3)在(2)的條件下,△GFC的面積能否等于2?請說明理由.
【答案】(1)10;(2)12-a;(3)不能
【解析】解:(1)過點G作GM⊥BC于M.在正方形EFGH中,
∠HEF=90°,EH=EF,
∴∠AEH+∠BEF=90°.
∵∠AEH+∠AHE=90°,
∴∠AHE=∠BEF.
又∵∠A=∠B=90°,
∴△AHE≌△BEF.
同理可證△MFG≌△BEF.
∴GM=BF=AE=2.∴FC=BC-BF=10.
∴.
(2)過點G作GM⊥BC交BC的延長線于M,連接HF.
∵AD∥BC,∴∠AHF=∠MFH.
∵EH∥FG,∴∠EHF=∠GFH.
∴∠AHE=∠MFG.
又∵∠A=∠GMF=90°,EH=GF,
∴△AHE≌△MFG.∴GM=AE=2.
∴.
(3)△GFC的面積不能等于2.
說明一:∵若S△GFC=2,則12-a=2,∴a=10.
此時,在△BEF中,
.
在△AHE中,
,
∴AH>AD,即點H已經(jīng)不在邊AD上,故不可能有S△GFC=2.
說明二:△GFC的面積不能等于2.∵點H在AD上,
∴菱形邊EH的最大值為,∴BF的最大值為.
又∵函數(shù)S△GFC=12-a的值隨著a的增大而減小,
∴S△GFC的最小值為.
又∵,∴△GFC的面積不能等于2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是△ABC的角平分線,點E位于邊BC上,已知BD是BA與BE的比例中項.
(1)求證:∠CDE=∠ABC;
(2)求證:ADCD=ABCE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線經(jīng)過點(2,3),對稱軸為直線x =1.
(1)求拋物線的表達(dá)式;
(2)如果垂直于y軸的直線l與拋物線交于兩點A(, ),B(, ),其中, ,與y軸交于點C,求BCAC的值;
(3)將拋物線向上或向下平移,使新拋物線的頂點落在x軸上,原拋物線上一點P平移后對應(yīng)點為點Q,如果OP=OQ,直接寫出點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,動點P從點B出發(fā),在BA邊上以每秒5cm的速度向點A勻速運動,同時動點Q從點C出發(fā),在CB邊上以每秒4cm的速度向點B勻速運動,運動時間為t秒(0<t<2),連接PQ.
(1)若△BPQ與△ABC相似,求t的值;
(2)連接AQ、CP,若AQ⊥CP,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】高速公路某收費站出城方向有編號為的五個小客車收費出口,假定各收費出口每20分鐘通過小客車的數(shù)量分別都是不變的.同時開放其中的某兩個收費出口,這兩個出口20分鐘一共通過的小客車數(shù)量記錄如下:
收費出口編號 | |||||
通過小客車數(shù)量(輛) | 260 | 330 | 300 | 360 | 240 |
在五個收費出口中,每20分鐘通過小客車數(shù)量最多的一個出口的編號是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,的坐標(biāo)分別為,將繞點旋轉(zhuǎn)后得到,其中點的對應(yīng)點的坐標(biāo)為.
(1)求出點的坐標(biāo);
(2)求點的坐標(biāo),并求出點的對應(yīng)點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩同學(xué)從A地出發(fā),騎自行車在同一條路上行駛到B地,他們離出發(fā)地的距離s(千米)和行駛時間t(小時)之間的函數(shù)關(guān)系圖象如圖所示,根據(jù)圖中提供的信息,有下列說法:
(1)他們都行駛了18千米;
(2)甲在途中停留了0.5小時;
(3)乙比甲晚出發(fā)了0.5小時;
(4)相遇后,甲的速度小于乙的速度;
(5)甲、乙兩人同時到達(dá)目的地
其中符合圖象描述的說法有( )
A. 2個B. 3個C. 4個D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,平分,交于點且,延長與的延長線相交于點,連接、.下列結(jié)論:①;②是等邊三角形;③;④;⑤;其中正確的有( )
A.個B.個
C.個D.個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù)(x>0)的圖象經(jīng)過點A,B,點A的坐標(biāo)為(1,2).過點A作AC∥y軸,AC=1(點C位于點A的下方),過點C作CD∥x軸,與函數(shù)的圖象交于點D,過點B作BE⊥CD,垂足E在線段CD上,連接OC,OD.
(1)求△OCD的面積;
(2)當(dāng)BE=AC時,求CE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com