【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)D坐標(biāo)為(2,﹣1),且過(guò)點(diǎn)B(3,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式及點(diǎn)C的坐標(biāo);
(2)連結(jié)OD、CD、CB,CD交x軸于點(diǎn)E,求S△CEB:S△ODE.
【答案】(1)y=x2﹣4x+3,點(diǎn)C(0,3);(2)3:1.
【解析】
(1)拋物線的表達(dá)式為:y=a(x﹣2)2﹣1,將點(diǎn)B的坐標(biāo)代入上式并解得:a=1,即可求解;
(2)直線CD的表達(dá)式為:y=﹣2x+3,則點(diǎn)E(,0),S△CEB=×EB×OC=,S△ODE=×OE×|yD|=,即可求解.
解:(1)拋物線的表達(dá)式為:y=a(x﹣2)2﹣1,
將點(diǎn)B的坐標(biāo)代入上式并解得:a=1,
故拋物線的表達(dá)式為:y=x2﹣4x+3,
則點(diǎn)C(0,3);
(2)將點(diǎn)C、D的坐標(biāo)代入一次函數(shù)表達(dá)式:y=mx+n并解得:
直線CD的表達(dá)式為:y=﹣2x+3,
則點(diǎn)E(,0),
S△CEB=×EB×OC=,
S△ODE=×OE×|yD|=,
故S△CEB:S△ODE=3:1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(6分)如圖,菱形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,分別延長(zhǎng)OA,OC到點(diǎn)E,F,使AE=CF,依次連接B,F,D,E各點(diǎn).
(1)求證:△BAE≌△BCF;
(2)若∠ABC=50°,則當(dāng)∠EBA= °時(shí),四邊形BFDE是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x方程x2-6x+m+4=0有兩個(gè)實(shí)數(shù)根x1,x2
(1)求m的取值范圍.
(2)若,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=ax經(jīng)過(guò)點(diǎn)A(4,2),點(diǎn)B在雙曲線y=(x>0)的圖象上,連結(jié)OB、AB,若∠ABO=90°,BA=BO,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l1∥l2∥l3,且l1與l2的距離為1,l2與l3的距離為3.把一塊含有45°角的直角三角板如圖所示放置,頂點(diǎn)A,B,C恰好分別落在三條直線上,AC與直線l2交于點(diǎn)D,則線段BD的長(zhǎng)度為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c的圖象與x軸交于A(4,0),B兩點(diǎn),與y軸交于點(diǎn)C(0,2),對(duì)稱軸x=1,與x軸交于點(diǎn)H.
(1)求拋物線的函數(shù)表達(dá)式;
(2)直線y=kx+1(k≠0)與y軸交于點(diǎn)E,與拋物線交于點(diǎn) P,Q(點(diǎn)P在y軸左側(cè),點(diǎn)Q在y軸右側(cè)),連接CP,CQ,若△CPQ的面積為,求點(diǎn)P,Q的坐標(biāo);
(3)在(2)的條件下,連接AC交PQ于G,在對(duì)稱軸上是否存在一點(diǎn)K,連接GK,將線段GK繞點(diǎn)G順時(shí)針旋轉(zhuǎn)90°,使點(diǎn)K恰好落在拋物線上,若存在,請(qǐng)直接寫(xiě)出點(diǎn)K的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)分別交、軸于、兩點(diǎn),拋物線經(jīng)過(guò)、兩點(diǎn),與軸的另一交點(diǎn)為.
(1)求、的值及點(diǎn)的坐標(biāo);
(2)動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)運(yùn)動(dòng),過(guò)作軸的垂線交拋物線于點(diǎn),交線段于點(diǎn).設(shè)運(yùn)動(dòng)時(shí)間為秒.
①當(dāng)為何值時(shí),線段長(zhǎng)度最大,最大值是多少?(如圖1)
②過(guò)點(diǎn)作,垂足為,連結(jié),若與相似,求的值(如圖2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,四邊形是邊長(zhǎng)為2的正方形,,四邊形是邊長(zhǎng)為的正方形,點(diǎn)分別在邊上,此時(shí),成立.
(1)當(dāng)正方形繞點(diǎn)逆時(shí)針旋轉(zhuǎn),如圖②,成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由;
(2)當(dāng)正方形繞點(diǎn)逆時(shí)針旋轉(zhuǎn)(任意角)時(shí),仍成立嗎?直接回答;
(3)連接,當(dāng)正方形繞點(diǎn)逆時(shí)針旋轉(zhuǎn)時(shí),是否存在∥,若存在,請(qǐng)求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com