【題目】如圖,風(fēng)箏的圖案是以直線為對(duì)稱軸的軸對(duì)稱圖形,下列結(jié)論不一定成立的是( )
A.垂直平分線段B.
C.連接、,其交點(diǎn)在上D.,
【答案】D
【解析】
根據(jù)軸對(duì)稱圖形的性質(zhì)逐一判斷即可得答案,
A. ∵對(duì)稱軸垂直平分對(duì)應(yīng)點(diǎn)連線,
∴AF⊥EG,AF⊥BC,故A選項(xiàng)正確,不符合題意,
∵BC、EG、AF在同一平面內(nèi),
∴BC//EG,故B選項(xiàng)正確,不符合題意,
如圖,連接BE、CG、BG、CE,BG與CE交于H,
∵圖案是以直線AF為對(duì)稱軸的軸對(duì)稱圖形,
∴△BEG≌△CEG,
∴∠BGE=∠CEG,
∴EH=GH,
∴點(diǎn)H在EG的垂直平分線上,
∴BG、CE的交點(diǎn)在AF上,故C選項(xiàng)正確,不符合題意,
∵題中沒有給出角度相等,
∴不能判定,,故D選項(xiàng)不一定成立,符合題意,
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,AB=15,BD=6,BE=3,點(diǎn)P從點(diǎn)E出發(fā)沿EA方向運(yùn)動(dòng),連結(jié)PD,以PD為邊,在PD右側(cè)按如圖方式作等邊△DPF,當(dāng)點(diǎn)P從點(diǎn)E運(yùn)動(dòng)到點(diǎn)A時(shí),點(diǎn)F運(yùn)動(dòng)的路徑長是( 。
A.8B.10C.D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)B(6,0)的直線AB與直線OA相交于點(diǎn)A(4,2),動(dòng)點(diǎn)M在線段OA和射線AC上運(yùn)動(dòng).
(1)求直線AB的解析式.
(2)求△OAC的面積.
(3)是否存在點(diǎn)M,使△OMC的面積是△OAC的面積的?若存在求出此時(shí)點(diǎn)M的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在軸正半軸上,以為邊作等邊,,其中是方程的解.
(1)求點(diǎn)的坐標(biāo).
(2)如圖1,點(diǎn)在軸正半軸上,以為邊在第一象限內(nèi)作等邊,連并延長交軸于點(diǎn),求的度數(shù).
(3)如圖2,若點(diǎn)為軸正半軸上一動(dòng)點(diǎn),點(diǎn)在點(diǎn)的右邊,連,以為邊在第一象限內(nèi)作等邊,連并延長交軸于點(diǎn),當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),的值是否發(fā)生變化?若不變,求其值;若變化,求出其變化的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=(x+2)2+m的圖象與y軸交于點(diǎn)C,點(diǎn)B在拋物線上,且與點(diǎn)C關(guān)于拋物線的對(duì)稱軸對(duì)稱,已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上的點(diǎn)A(﹣1,0)及點(diǎn)B.
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象,寫出滿足(x+2)2+m≥kx+b的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系xOy中,△ABC的頂點(diǎn)坐標(biāo)分別是A(-2,3),B(m-1,1),C(1,-2),點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)P的坐標(biāo)為(-3,n-2).
(1)求m,n的值;
(2)畫出△ABC,并求出它的面積;
(3)畫出與△ABC關(guān)于y軸成軸對(duì)稱的圖形△A1B1C1,并寫出△A1B1C1,各個(gè)頂點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠A=90°,有一個(gè)銳角為60°,BC=6.若點(diǎn)P在直線AC上(不與點(diǎn)A,C重合),且∠ABP=30°,則CP的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABN和△ACM位置如圖所示,AB=AC,AD=AE,∠1=∠2.
(1)求證:BD=CE;
(2)求證:∠M=∠N.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com