【題目】某商場試銷一種成本為每件元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于,經(jīng)試銷發(fā)現(xiàn),銷售量(件)與銷售單價(元)符合一次函數(shù),且時,;時,

求一次函數(shù)的表達式;

若該商場獲得利潤為元,試寫出利潤與銷售單價之間的關系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?

【答案】(1);(2)銷售單價定為元時,商場可獲得最大利潤,最大利潤是元.

【解析】

(1)根據(jù)題意將(65,55),(75,45)代入解二元一次方程組即可;(2)表示出利潤解析式,化成頂點式討論即可解題.

解:根據(jù)題意得,

解得

所求一次函數(shù)的表達式為

(2)

,

拋物線的開口向下,

時,的增大而增大,

又因為獲利不得高于45%,60

所以,

時,

當銷售單價定為元時,商場可獲得最大利潤,最大利潤是元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A是反比例函數(shù)y=(x>0)的圖象上的一個動點,連接OA,OB⊥OA,且OB=2OA,那么經(jīng)過點B的反比例函數(shù)圖象的表達式為( 。

A. y=﹣ B. y= C. y=﹣ D. y=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC=10cm,長為4cm的線段DE在邊AC上,且點D與點A重合,點FDE的中點,線段DE從點A出發(fā),沿AC方向向點C勻速運動,直到點E與點C重合,速度1cm/s。過點FPF⊥AC,交AB于點P,過點PPQ//AC,交BC于點Q,連接PD,PE,QE,設線段DE的運動時間為t(s).(0≤t≤6)

(1)請分別用含有t的代數(shù)式表示線段PF、BQ

(2)t為何值時,四邊形PFCQ為正方形?

(3)設四邊形PDEQ的面積為y(cm)請求出yt之間的函數(shù)關系式,并求出當t為何值時,四邊形PDEQ的面積最大,最大是多少?

(4)是否存在某一時刻t,使得EP平分∠AEQ?若存在,求出此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,△ABC和△DEF相似,則關于位似中心與相似比敘述正確的是( 。

A. 位似中心是點B,相似比是2:1 B. 位似中心是點D,相似比是2:1

C. 位似中心在點G,H之間,相似比為2:1 D. 位似中心在點G,H之間,相似比為1:2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】函數(shù)y=ax2+bx+a+ba≠0)的圖象可能是()

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下框中是小明對一道題目的解答以及老師的批改.

題目:某村計劃建造如圖所示的矩形蔬菜溫室,要求長與寬的比為2∶1,在溫室內(nèi),沿前側(cè)內(nèi)墻保留3 m的空地,其他三側(cè)內(nèi)墻各保留1 m的通道,當溫室的長與寬各為多少時,矩形蔬菜種植區(qū)域的面積是288 m2?

解:設矩形蔬菜種植區(qū)域的寬為x_m,則長為2xm,

根據(jù)題意,得x·2x=288.

解這個方程,得x1=-12(不合題意,舍去),x2=12,

所以溫室的長為2×12+3+1=28(m),寬為12+1+1=14(m)

答:當溫室的長為28 m,寬為14 m時,矩形蔬菜種植區(qū)域的面積是288 m2.

我的結(jié)果也正確!

小明發(fā)現(xiàn)他解答的結(jié)果是正確的,但是老師卻在他的解答中畫了一條橫線,并打了一個?.

結(jié)果為何正確呢?

(1)請指出小明解答中存在的問題,并補充缺少的過程:變化一下會怎樣?

(2)如圖,矩形ABCD在矩形ABCD的內(nèi)部,ABAB′,ADAD,且ADAB=2∶1,設ABAB′、BCBC′、CDCD′、DADA之間的距離分別為ab、cd,要使矩形ABCD′∽矩形ABCD,a、b、c、d應滿足什么條件?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,EAB上一點,連接DE.過點AAFDE,垂足為F,⊙O經(jīng)過點C、D、F,與AD相交于點G

(1)求證:△AFG∽△DFC

(2)若正方形ABCD的邊長為4,AE=1,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明家窗外有一堵圍墻AB,由于圍墻的遮擋,清晨太陽光恰好從窗戶的最高點C射進房間的地板F處,中午太陽光恰好能從窗戶的最低點D射進房間的地板E處,小明測得窗子距地面的高度OD0.8 m,窗高CD1.2 m,并測得OE0.8 m,OF3 m,求圍墻AB的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知長方形硬紙板ABCD的長BC為40cm,寬CD為30cm,按如圖所示剪掉2個小正方形和2個小長方形(即圖中陰影部分),將剩余部分折成一個有蓋的長方體盒子,

設剪掉的小正方形邊長為xcm.(紙板的厚度忽略不計)

(1)填空:EF= .cm,GH= .cm;(用含x的代數(shù)式表示)

(2)若折成的長方體盒子的表面積為950cm2,求該長方體盒子的體積

查看答案和解析>>

同步練習冊答案