點(diǎn)A(6,4)和點(diǎn)B(2,1)在平面直角坐標(biāo)系中的位置如圖所示.
(1)將點(diǎn)A、B分別向左平移5個(gè)單位,得到點(diǎn)A1、B1,請(qǐng)畫(huà)出四邊形AA1B1B;
(2)畫(huà)一條直線,將四邊形AA1B1B分成兩個(gè)全等的圖形,并且每個(gè)圖形都是軸對(duì)稱(chēng)圖形.

【答案】分析:(1)將點(diǎn)A、B分別向右平移5個(gè)單位,得到點(diǎn)A1、B1,順次連接四點(diǎn)即可.
(2)取AB1或A1B即可.
解答:解:(1)所畫(huà)圖形如下所示:

(2)所畫(huà)直線如上所示,直線AB1或A1B即為所求.
點(diǎn)評(píng):本題主要考查了平移和軸對(duì)稱(chēng)變換作圖的問(wèn)題,要求對(duì)平移和軸對(duì)稱(chēng)的性質(zhì)有較好的掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二次函數(shù)y=ax2+bx+3(a≠0)的圖象與x軸交于點(diǎn)A(-1,0)和點(diǎn)B(3,0)兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C.
(1)求此二次函數(shù)的解析式,并寫(xiě)出它的對(duì)稱(chēng)軸;
(2)若直線l:y=kx(k>0)與線段BC交于點(diǎn)D(不與點(diǎn)B,C重合),則是否存在這樣的直線l,使得以B,O,D為頂點(diǎn)的三角形與△BAC相似?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若直線l′:y=m與該拋物線交于M、N兩點(diǎn),且以MN為直徑的圓與x軸相切,求該圓半徑的長(zhǎng)度.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•黃浦區(qū)二模)已知一次函數(shù)y=x+1的圖象和二次函數(shù)y=x2+bx+c的圖象都經(jīng)過(guò)A、B兩點(diǎn),且點(diǎn)A在y軸上,B點(diǎn)的縱坐標(biāo)為5.
(1)求這個(gè)二次函數(shù)的解析式;
(2)將此二次函數(shù)圖象的頂點(diǎn)記作點(diǎn)P,求△ABP的面積;
(3)已知點(diǎn)C、D在射線AB上,且D點(diǎn)的橫坐標(biāo)比C點(diǎn)的橫坐標(biāo)大2,點(diǎn)E、F在這個(gè)二次函數(shù)圖象上,且CE、DF與y軸平行,當(dāng)CF∥ED時(shí),求C點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖(1)己知拋物線y=ax2+bx+c與x軸交于點(diǎn)A(-1,0)和點(diǎn)B(3,0),與y軸正半軸交于點(diǎn)C,且
cos∠CAB=
10
10

(1)求拋物線的解析式;
(2)如圖(2),己知點(diǎn)H(0,1).問(wèn)在拋物線上是否存在點(diǎn)G,使得S△GHC=S△GHA?若存在,求出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖(3),拋物線上點(diǎn)D在x軸上的正投影為點(diǎn)E(2,0),F(xiàn)是OC的中點(diǎn),連接DF,P為線段BD上的一點(diǎn),若∠EPF=∠BDF,求線段PE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線y1與y2都與x軸交于點(diǎn)O(0,0)和點(diǎn)A,y1的頂點(diǎn)是B(2,-1),y2的頂點(diǎn)是C(2,-3),P是y1上的一個(gè)動(dòng)點(diǎn),過(guò)P作y軸的平行線交y2于點(diǎn)Q,分別過(guò)P,Q作x軸的平行線,分別交y1,y2于點(diǎn)P′,Q′,連接P′Q′.
(1)四邊形PP′Q′Q 是
形.
(2)求y1與y2關(guān)于x的函數(shù)關(guān)系式.
(3)設(shè)P點(diǎn)的橫坐標(biāo)為t(t>2且t≠4),四邊形PP′Q′Q的周長(zhǎng)為y,試求y與t的函數(shù)關(guān)系式.
(4)當(dāng)四邊形PP′Q′Q是正方形,請(qǐng)直接寫(xiě)出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

作業(yè)寶如圖,拋物線y1與y2都與x軸交于點(diǎn)O(0,0)和點(diǎn)A,y1的頂點(diǎn)是B(2,-1),y2的頂點(diǎn)是C(2,-3),P是y1上的一個(gè)動(dòng)點(diǎn),過(guò)P作y軸的平行線交y2于點(diǎn)Q,分別過(guò)P,Q作x軸的平行線,分別交y1,y2于點(diǎn)P′,Q′,連接P′Q′.
(1)四邊形PP′Q′Q 是______形.
(2)求y1與y2關(guān)于x的函數(shù)關(guān)系式.
(3)設(shè)P點(diǎn)的橫坐標(biāo)為t(t>2且t≠4),四邊形PP′Q′Q的周長(zhǎng)為y,試求y與t的函數(shù)關(guān)系式.
(4)當(dāng)四邊形PP′Q′Q是正方形,請(qǐng)直接寫(xiě)出P點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案