【題目】已知等邊三角形ABC在平面直角坐標(biāo)系中的位置如圖所示,C10),點(diǎn)Ay軸的正半軸上,把等邊三角形ABC沿x軸正半軸作無(wú)滑動(dòng)的連續(xù)翻轉(zhuǎn),每次翻轉(zhuǎn)120°,經(jīng)過(guò)2018次翻轉(zhuǎn)之后,點(diǎn)C的坐標(biāo)是______

【答案】(4036,)

【解析】

先求出第一次至第六次的點(diǎn)C坐標(biāo),探究規(guī)律后,利用規(guī)律解決問(wèn)題.

解:第一次點(diǎn)C坐標(biāo)(1,0),第二次點(diǎn)C坐標(biāo)(4,),第三次點(diǎn)C坐標(biāo)(7,0),第四次點(diǎn)C坐標(biāo)(7,0),第五次點(diǎn)C坐標(biāo)(10,),第六次點(diǎn)C坐標(biāo)(13,0),根據(jù)這個(gè)規(guī)律2018=672×3+2
所以經(jīng)過(guò)2018次翻轉(zhuǎn)之后,點(diǎn)C的橫坐標(biāo)為672×3×2+4=4036,縱坐標(biāo)為,
所以點(diǎn)C坐標(biāo)是(4036,).
故答案為:(4036).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABO的直徑,點(diǎn)C是圓上任意一點(diǎn),點(diǎn)DAC中點(diǎn),ODAC于點(diǎn)EBDAC于點(diǎn)F,若BF1.25DF,則tanABD的值為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,,連結(jié)AC,過(guò)點(diǎn)C作直線lAB,點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),直線PA與⊙O交于另一點(diǎn)D,連結(jié)CD,設(shè)直線PB與直線AC交于點(diǎn)E.

(1)求∠BAC的度數(shù);

(2)當(dāng)點(diǎn)DAB上方,且CDBP時(shí),求證:PC=AC;

(3)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中

①當(dāng)點(diǎn)A在線段PB的中垂線上或點(diǎn)B在線段PA的中垂線上時(shí),求出所有滿足條件的∠ACD的度數(shù);

②設(shè)⊙O的半徑為6,點(diǎn)E到直線l的距離為3,連結(jié)BD,DE,直接寫(xiě)出BDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為發(fā)展校園足球運(yùn)動(dòng),某縣城區(qū)四校決定聯(lián)合購(gòu)買(mǎi)一批足球運(yùn)動(dòng)裝備,市場(chǎng)調(diào)查發(fā)現(xiàn):甲、乙兩商場(chǎng)以同樣的價(jià)格出售同種品牌的足球隊(duì)服和足球,已知每套隊(duì)服比每個(gè)足球多50元,兩套隊(duì)服與三個(gè)足球的費(fèi)用相等,經(jīng)洽談,甲商場(chǎng)優(yōu)惠方案是:每購(gòu)買(mǎi)十套隊(duì)服,送一個(gè)足球;乙商場(chǎng)優(yōu)惠方案是:若購(gòu)買(mǎi)隊(duì)服超過(guò)80套,則購(gòu)買(mǎi)足球打八折.

(1)求每套隊(duì)服和每個(gè)足球的價(jià)格是多少?

(2)若城區(qū)四校聯(lián)合購(gòu)買(mǎi)100套隊(duì)服和a個(gè)足球,請(qǐng)用含a的式子分別表示出到甲商場(chǎng)和乙商場(chǎng)購(gòu)買(mǎi)裝備所花的費(fèi)用;

(3)假如你是本次購(gòu)買(mǎi)任務(wù)的負(fù)責(zé)人,你認(rèn)為到哪家商場(chǎng)購(gòu)買(mǎi)比較合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將兩個(gè)全等的直角三角形ABCDBE按圖方式擺放,其中,點(diǎn)E落在AB上,DE所在直線交AC所在直線于點(diǎn)F

求證:;

若將圖中的繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)角a,且,其他條件不變,如圖請(qǐng)你直接寫(xiě)出DE的大小關(guān)系:______

若將圖的繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)角,且,其他條件不變,如圖請(qǐng)你寫(xiě)出此時(shí)AF、EFDE之間的關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】鄂州市電信部門(mén)積極支持鄂州國(guó)際航空大都市的建設(shè),如圖,計(jì)劃修建一條連接B,C兩地的電纜,測(cè)量人員在山腳A測(cè)得B,C兩地的仰角分別為31°45°,在B處測(cè)得C處的仰角為53°.已知C地比A地髙50m,則電纜BC至少需要多少米?(精確到1m,參考數(shù)據(jù):sin31°≈,tan31°≈,sin37°≈0.6,cos37°≈0.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為O的直徑,射線AP交O于C點(diǎn),PCO的平分線交O于D點(diǎn),過(guò)點(diǎn)D作交AP于E點(diǎn).

1求證:DE為O的切線;

2DE=3,AC=8,求直徑AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有長(zhǎng)為24m的籬笆,現(xiàn)一面利用墻(墻的最大可用長(zhǎng)度a10m)圍成中間隔有一道籬笆的長(zhǎng)方形花圃,設(shè)花圃的寬ABxm,面積為Sm2

1)求Sx的函數(shù)關(guān)系式及x值的取值范圍;

2)要圍成面積為45m2的花圃,AB的長(zhǎng)是多少米?

3)當(dāng)AB的長(zhǎng)是多少米時(shí),圍成的花圃的面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的一元二次方程x2-x-m+1)=0有兩個(gè)不相等的實(shí)數(shù)根

1)求m的取值范圍;

2)若m為符合條件的最小整數(shù),求此方程的根

查看答案和解析>>

同步練習(xí)冊(cè)答案