【題目】某市在招商引資期間,把已倒閉的機床廠租給外地某投資商,該投資商為減小固定資產(chǎn)投資,將原有的正方形場地改建成800平方米的長方形場地,且其長、寬的比為5:2.

(1)求改建后的長方形場地的長和寬為多少米?

(2)如果把原來面積為900平方米的正方形場地的金屬柵欄圍墻全部利用,來作為新場地的長方形圍墻,柵欄圍墻是否夠用?為什么?

【答案】(1)長和寬分別為20米、8米;(2)這些金屬柵欄不夠用.

【解析】

(1)設(shè)長方形圍場長為5x米,則其寬為2x米,根據(jù)長方形面積列出方程求出x的值,進而可知長方形長與寬;

(2)由(1)中長方形的長與寬可知長方形周長,同理可得正方形的周長,比較大小可知是否夠用.

(1)設(shè)長方形圍場長為5x米,則其寬為2x米,根據(jù)題意,

得:5x2x=800,

解得:x=4x=﹣4(舍),

∴長=4×5=20,寬=4×2=8

答:改建后的長方形場地的長和寬分別為20米、8米;

(2)設(shè)正方形邊長為y,則y2=900,

解得:y=30y=﹣30(舍),

原正方形周長為120米,

新長方形的周長為(20+8)×2=56,

120<56,

∴柵欄不夠用,

答:這些金屬柵欄不夠用.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,矩形OABC的頂點O在坐標原點,邊OA在x軸上,OC在y軸上,如果矩形OA′B′C′與矩形OABC關(guān)于點O位似,且矩形OA′B′C′的面積等于矩形OABC面積的,那么點B′的坐標是( )

A.(-2,3)
B.(2,-3)
C.(3,-2)或(-2,3)
D.(-2,3)或(2,-3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是(
A.“明天降雨的概率是80%”表示明天有80%的時間都在降雨
B.“拋一枚硬幣正面朝上的概率為 ”表示每拋2次就有一次正面朝上
C.“彩票中獎的概率為1%”表示買100張彩票肯定會中獎
D.“拋一枚正方體骰子,朝上的點數(shù)為2的概率為 ”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)為2”這一事件發(fā)生的頻率穩(wěn)定在 附近

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果10b=n,那么b為n的勞格數(shù),記為b=d(n),由定義可知:10b=n與b=d(n)所表示的b、n兩個量之間的同一關(guān)系.
(1)根據(jù)勞格數(shù)的定義,填空:d(10)= , d(102)=;
(2)勞格數(shù)有如下運算性質(zhì): 若m、n為正數(shù),則d(mn)=d(m)+d(n),d( )=d(m)﹣d(n).
根據(jù)運算性質(zhì),填空:
=(a為正數(shù)),若d(2)=0.3010,則d(4)= , d(5)= , d(0.08)=;
(3)如表中與數(shù)x對應的勞格數(shù)d(x)有且只有兩個是錯誤的,請找出錯誤的勞格數(shù),說明理由并改正.

x

1.5

3

5

6

8

9

12

27

d(x)

3a﹣b+c

2a﹣b

a+c

1+a﹣b﹣c

3﹣3a﹣3c

4a﹣2b

3﹣b﹣2c

6a﹣3b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】實踐操作
如圖,△ABC是直角三角形,∠ACB=90°,利用直尺和圓規(guī)按下列要求作圖,并在圖中標明相應的字母.(保留作圖痕跡,不寫作法)
(1)作∠BAC的平分線,交BC于點O;
(2)以O(shè)為圓心,OC為半徑作圓.
(3)在你所作的圖中,AB與⊙O的位置關(guān)系是;(直接寫出答案)
(4)若AC=5,BC=12,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一只不透明的袋子中裝有白球2個和黃球1個,這些球除顏色外都相同,攪勻后從中任意摸出1個球,記下顏色后不放回,攪勻后再從中任意摸出1個球,請用列表或畫樹狀圖的方法求兩次都摸出白球的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列三個函數(shù):①y=x+1;② ;③y=x2﹣x+1.其圖象既是軸對稱圖形,又是中心對稱圖形的個數(shù)有(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在邊長為a的正方形中挖掉一個邊長為b的小正方形(a>b).把余下的部分剪拼成一個矩形(如圖).通過計算圖形(陰影部分)的面積,驗證了一個等式,則這個等式是(

A. a2﹣b2=(a+b)(a﹣b) B. (a+b)2=a2+2ab+b2

C. (a﹣b)2=a2﹣2ab+b2 D. a2﹣ab=a(a﹣b)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點DAB邊上一點,DEBCACE , ADDB=1:2,則△ADE與△ABC的面積之比為( 。
A.1:2
B.1:4
C.1:8
D.1:9

查看答案和解析>>

同步練習冊答案