【題目】如圖,在△ABC中,AC=3,BC=4,若AC,BC邊上的中線BE,AD垂直相交于點O,則AB=______.
【答案】
【解析】
利用三角形中線定義得到BD=2,AE=,且可判定點O為△ABC的重心,所以AO=2OD,OB=2OE,利用勾股定理得到BO2+OD2=4,OE2+AO2=,等量代換得到BO2+ AO2=4,BO2+AO2=,把兩式相加得到BO2+AO2=5,然后再利用勾股定理可計算出AB的長.
解:∵AD、BE為AC,BC邊上的中線,
∴BD=BC=2,AE=AC=,點O為△ABC的重心,
∴AO=2OD,OB=2OE,
∵BE⊥AD,
∴BO2+OD2=BD2=4,OE2+AO2=AE2=,
∴BO2+AO2=4,BO2+AO2=,
∴BO2+AO2= ,
∴BO2+AO2=5,
∴AB==.
故答案是:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】空間任意選定一點O,以點O為端點,作三條互相垂直的射線ox、oy、oz.這三條互相垂直的射線分別稱作x軸、y軸、z軸,統(tǒng)稱為坐標(biāo)軸,它們的方向分別為ox(水平向前)、oy(水平向右)、oz(豎直向上)方向,這樣的坐標(biāo)系稱為空間直角坐標(biāo)系.
將相鄰三個面的面積記為S1、S2、S3,且S1<S2<S3的小長方體稱為單位長方體,現(xiàn)將若干個單位長方體在空間直角坐標(biāo)系內(nèi)進行碼放,要求碼放時將單位長方體S1所在的面與x軸垂直,S2所在的面與y軸垂直,S3所在的面與z軸垂直,如圖1所示.
若將x軸方向表示的量稱為幾何體碼放的排數(shù),y軸方向表示的量稱為幾何體碼放的列數(shù),z軸方向表示的量稱為幾何體碼放的層數(shù);如圖2是由若干個單位長方體在空間直角坐標(biāo)內(nèi)碼放的一個幾何體,其中這個幾何體共碼放了1排2列6層,用有序數(shù)組記作(1,2,6),如圖3的幾何體碼放了2排3列4層,用有序數(shù)組記作(2,3,4).這樣我們就可用每一個有序數(shù)組(x,y,z)表示一種幾何體的碼放方式.
(1)如圖是由若干個單位長方體碼放的一個幾何體的三視圖,寫出這種碼放方式的有序數(shù)組,組成這個幾何體的單位長方體的個數(shù)為多少個;
(2)對有序數(shù)組性質(zhì)的理解,下列說法正確的是哪些;(只寫序號)
①每一個有序數(shù)組(x,y,z)表示一種幾何體的碼放方式.
②有序數(shù)組中x、y、z的乘積就表示幾何體中單位長方體的個數(shù).
③有序數(shù)組不同,所表示幾何體的單位長方體個數(shù)不同.
④不同的有序數(shù)組所表示的幾何體的體積不同.
⑤有序數(shù)組中x、y、z每兩個乘積的2倍可分別確定幾何體表面上S1、S2、S3的個數(shù).
(3)為了進一步探究有序數(shù)組(x,y,z)的幾何體的表面積公式S(x,y,z),某同學(xué)針對若干個單位長方體進行碼放,制作了下列表格:
幾何體 有序數(shù)組 | 單位長方體的個數(shù) | 表面上面積為的個數(shù) | 表面上面積為的個數(shù) | 表面上面積為的個數(shù) | 表面積 |
(1,1,1) | 1 | 2 | 2 | 2 | 2S1+2S2+2S3 |
(1,2,1) | 2 | 4 | 2 | 4 | 4S1+2S2+4S3 |
(3,1,1) | 3 | 2 | 6 | 6 | 2S1+6S2+6S3 |
(2,1,2) | 4 | 4 | 8 | 4 | 4S1+8S2+4S3 |
(1,5,1) | 5 | 10 | 2 | 10 | 10S1+2S2+10S3 |
(1,2,3) | 6 | 12 | 6 | 4 | 12S1+6S2+4S3 |
(1,1,7) | 7 | 14 | 14 | 2 | 14S1+14S2+2S3 |
(2,2,2) | 8 | 8 | 8 | 8 | 8S1+8S2+8S3 |
… | … | … | … | … | … |
根據(jù)以上規(guī)律,請寫出有序數(shù)組(x,y,z)的幾何體表面積計算公式S(x,y,z);(用x、y、z、S1、S2、S3表示)
(4)當(dāng)S1=2,S2=3,S3=4時,對由12個單位長方體碼放的幾何體進行打包,為了節(jié)約外包裝材料,對12個單位長方體碼放的幾何體表面積最小的規(guī)律進行探究,根據(jù)探究的結(jié)果請寫出使幾何體表面積最小的有序數(shù)組,并用幾何體表面積公式求出這個最小面積.(縫隙不計)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象分別交于M,N兩點,已知點M(-2,m).
(1)求反比例函數(shù)的表達式;
(2)點P為y軸上的一點,當(dāng)∠MPN為直角時,直接寫出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廣場有一個小型噴泉,水流從垂直于地面的水管OA噴出,OA長為1.5米.水流在各個方向上沿形狀相同的拋物線路徑落到地面上,某方向上拋物線路徑的形狀如圖所示,落點B到O的距離為3米.建立平面直角坐標(biāo)系,水流噴出的高度y(米)與水平距離x(米)之間近似滿足函數(shù)關(guān)系
(1)求y與x之間的函數(shù)關(guān)系式;
(2)求水流噴出的最大高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC三個頂點的坐標(biāo)分別是A(﹣3,1),B(﹣1,﹣1),C(2,2).
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1,并寫出點A1,B1,C1的坐標(biāo);
(2)畫出△ABC繞點B逆時針旋轉(zhuǎn)90°所得到的△A2B2C2,并求出S.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O 的直徑,點D在⊙O 上(點D不與A,B重合),直線AD交過點B的切線于點C,過點D作⊙O 的切線DE交BC于點E.
(1)求證:BE=CE;
(2)若DE平行AB,求sin∠ACO 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰三角形ABC中,AB=AC,AH⊥BC,點E是AH上一點,延長AH至點F,使FH=EH.
(1)求證:四邊形EBFC是菱形;
(2)如果∠BAC=∠ECF,求證:AC⊥CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一塊材料的形狀是銳角三角形ABC,邊BC=120mm,高AD=80mm,把它加工成矩形零件,使矩形的一邊在BC上,其余兩個頂點分別在AB、AC上,設(shè)EG=x mm,EF=y mm.
(1)寫出x與y的關(guān)系式;
(2)用S表示矩形EGHF的面積,某同學(xué)說當(dāng)矩形EGHF為正方形時S最大,這個說法正確嗎?說明理由,并求出S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)的某種產(chǎn)品每件成本為40元,經(jīng)市場調(diào)查整理出如下信息:
①該產(chǎn)品90天內(nèi)日銷售量(m件)與時間(第x天)滿足一次函數(shù)關(guān)系,部分數(shù)據(jù)如下表:
時間(第x天) | 1 | 3 | 6 | 10 | … |
日銷售量(m件) | 198 | 194 | 188 | 180 | … |
②該產(chǎn)品90天內(nèi)每天的銷售價格與時間(第x天)的關(guān)系如下表:
時間(第x天) | 1≤x<50 | 50≤x≤90 |
銷售價格(元/件) | x+60 | 100 |
(1)求m關(guān)于x的一次函數(shù)表達式;
(2)設(shè)銷售該產(chǎn)品每天利潤為y元,請寫出y關(guān)于x的函數(shù)表達式,并求出在90天內(nèi)該產(chǎn)品哪天的銷售利潤最大?最大利潤是多少?【提示:每天銷售利潤=日銷售量×(每件銷售價格-每件成本)】
(3)在該產(chǎn)品銷售的過程中,共有多少天銷售利潤不低于5400元,請直接寫出結(jié)果.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com