【題目】如圖,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE. 求證:四邊形BCDE是矩形.

【答案】證明:∵∠BAD=∠CAE, ∴∠BAD﹣∠BAC=∠CAE﹣∠BAC,
∴∠BAE=∠CAD,
∵在△BAE和△CAD中

∴△BAE≌△CAD(SAS),
∴∠BEA=∠CDA,BE=CD,
∵DE=CB,
∴四邊形BCDE是平行四邊形,
∵AE=AD,
∴∠AED=∠ADE,
∵∠BEA=∠CDA,
∴∠BED=∠CDE,
∵四邊形BCDE是平行四邊形,
∴BE∥CD,
∴∠CDE+∠BED=180°,
∴∠BED=∠CDE=90°,
∴四邊形BCDE是矩形.

【解析】求出∠BAE=∠CAD,證△BAE≌△CAD,推出∠BEA=∠CDA,BE=CD,得出平行四邊形BCDE,根據(jù)平行線性質(zhì)得出∠BED+∠CDE=180°,求出∠BED,根據(jù)矩形的判定求出即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形ABCD中, ,,求DC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圖中二次函數(shù)解析式為 ,則下列命題中正確的有(填序號(hào)).
;② ;③ ;④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形ABCD中,AC與BD相交于O,DE平分∠ADC交BC于E,∠BDE=15°,則∠COE=°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,過(guò)點(diǎn)OEFBCABE,交ACF,過(guò)點(diǎn)OODACD,下列四個(gè)結(jié)論:

EF=BE+CF;

②∠BOC=90°+A;

③點(diǎn)OABC各邊的距離相等;

④設(shè)OD=m,AE+AF=n,則

其中正確的結(jié)論是____.(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,BCAD,添加下列條件,不能判定四邊形ABCD是平行四邊形的是( 。

A.ABCDB.ABCDC.A=∠CD.BCAD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中.點(diǎn)E,F(xiàn)分別在BC,CD上,△AEF是等邊三角形.連接AC交EF于點(diǎn)G.過(guò)點(diǎn)G作GH⊥CE于點(diǎn)H.若 ,則 =( )

A.6
B.4
C.3
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在△ABC中,AB=BC=10,以AB為直徑作⊙O分別交AC,BC于點(diǎn)D,E,連接DE和DB,過(guò)點(diǎn)E作EF⊥AB,垂足為F,交BD于點(diǎn)P.

(1)求證:AD=DE;
(2)若CE=2,求線段CD的長(zhǎng);
(3)在(2)的條件下,求△DPE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C、D兩點(diǎn)在以AB為直徑的半圓O上,AD平分∠BAC,AB=20,AD=4 ,DE⊥AB于E.

(1)求DE的長(zhǎng).
(2)求證:AC=2OE.

查看答案和解析>>

同步練習(xí)冊(cè)答案