【題目】拋物線y=-x2+2x+3與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
(1)求直線BC的表達(dá)式;
(2)拋物線的對(duì)稱軸上存在點(diǎn)P,使∠APB=∠ABC,利用圖①求點(diǎn)P的坐標(biāo);
(3)點(diǎn)Q在y軸右側(cè)的拋物線上,利用圖②比較∠OCQ與∠OCA的大小,并說(shuō)明理由.
【答案】(1)y=-x+3(2)P點(diǎn)的坐標(biāo)為(1,2+2)或(1,-2-2)(3)當(dāng)Q點(diǎn)的橫坐標(biāo)為5時(shí),∠OCA=∠OCQ;當(dāng)Q點(diǎn)的橫坐標(biāo)大于5時(shí),則∠OCQ逐漸變小,故∠OCA>∠OCQ;當(dāng)Q點(diǎn)的橫坐標(biāo)小于5且大于0時(shí),則∠OCQ逐漸變大,故∠OCA<∠OCQ.
【解析】試題分析:(1)由拋物線解析式可求B、C的坐標(biāo),利用待定系數(shù)法可求直線BC的解析式;
(2)由直線BC的解析式可知∠APB=∠ABC=45°,設(shè)拋物線對(duì)稱軸交直線BC于點(diǎn)D,交x軸于點(diǎn)E,結(jié)合二次函數(shù)的對(duì)稱性可得PB=PD,根據(jù)勾股定理求出BD的長(zhǎng),從而求出PE的長(zhǎng),進(jìn)而求出P的坐標(biāo);
(3)設(shè)Q(x,-x2+2x+3),當(dāng)∠OCA=∠OCQ時(shí),利用三角形相似可得到關(guān)于x的方程,求出Q點(diǎn)的橫坐標(biāo),再結(jié)合圖形比較兩角的大小.
試題解析:(1)在y=-x2+2x+3中,令y=0可得0=-x2+2x+3,解得x=-1或x=3,令x=0可得y=3,∴B(3,0),C(0,3).∴可設(shè)直線BC的表達(dá)式為y=kx+3,把B點(diǎn)坐標(biāo)代入可得3k+3=0,解得k=-1,∴直線BC的表達(dá)式為y=-x+3.
(2)∵OB=OC,∴∠ABC=45°.∵y=-x2+2x+3=-(x-1)2+4,∴拋物線的對(duì)稱軸為直線x=1.
設(shè)拋物線的對(duì)稱軸交直線BC于點(diǎn)D,交x軸于點(diǎn)E,當(dāng)點(diǎn)P在x軸上方時(shí),如圖甲,∵∠APB=∠ABC=45°,且PA=PB,∴∠PBA=67.5°,∠DPB=∠APB=22.5°,∴∠PBD=22.5°,∴∠DPB=∠DBP,∴DP=DB.在Rt△BDE中,BE=DE=2,∴BD=2,∴PE=2+2,∴P(1,2+2);
當(dāng)點(diǎn)P在x軸下方時(shí),由對(duì)稱性可知P點(diǎn)坐標(biāo)為(1,-2-2).
綜上可知,P點(diǎn)的坐標(biāo)為(1,2+2)或(1,-2-2).
(3)設(shè)Q(x,-x2+2x+3),當(dāng)點(diǎn)Q在x軸下方時(shí),如圖乙,過(guò)點(diǎn)Q作QF⊥y軸于點(diǎn)F,則CF=x2-2x.當(dāng)∠OCA=∠OCQ時(shí),則△QFC∽△AOC,∴,即,解得x=0(舍去)或x=5.
∴當(dāng)Q點(diǎn)的橫坐標(biāo)為5時(shí),∠OCA=∠OCQ;當(dāng)Q點(diǎn)的橫坐標(biāo)大于5時(shí),則∠OCQ逐漸變小,故∠OCA>∠OCQ;當(dāng)Q點(diǎn)的橫坐標(biāo)小于5且大于0時(shí),則∠OCQ逐漸變大,故∠OCA<∠OCQ.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知有理數(shù)在數(shù)軸上所對(duì)應(yīng)的點(diǎn)分別是三點(diǎn),且滿足:①多項(xiàng)式是關(guān)于的二次三項(xiàng)式:②
請(qǐng)?jiān)趫D1的數(shù)軸上描出三點(diǎn),并直接寫(xiě)出三數(shù)之間的大小關(guān)系(用“<”連接) ;
點(diǎn)為數(shù)軸上點(diǎn)右側(cè)一點(diǎn),且點(diǎn)到點(diǎn)的距離是到點(diǎn)距離的倍,求點(diǎn)在數(shù)軸上所對(duì)應(yīng)的有理數(shù);
點(diǎn)在數(shù)軸上以每秒個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí)點(diǎn)和點(diǎn)在數(shù)軸上分別以每秒個(gè)單位長(zhǎng)度和個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng)(其中),若在整個(gè)運(yùn)動(dòng)的過(guò)程中,點(diǎn)到點(diǎn)的距離與點(diǎn)到點(diǎn)的距離差始終不變,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,AB是⊙O的直徑,AB=4,點(diǎn)F,C是⊙O上兩點(diǎn),連接AC,AF,OC,弦AC平分∠FAB,∠BOC=60°,過(guò)點(diǎn)C作CD⊥AF交AF的延長(zhǎng)線于點(diǎn)D,垂足為點(diǎn)D.
(1)求扇形OBC的面積(結(jié)果保留π);
(2)求證:CD是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把2張形狀大小完全相同的小長(zhǎng)方形卡片(如圖①)不重疊地放在一個(gè)底面為長(zhǎng)方形(長(zhǎng)為m,寬為n)的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示.陰影部分剛好能分割成兩張形狀大小不同的小長(zhǎng)方形卡片(如圖③),則分割后的兩個(gè)陰影長(zhǎng)方形的周長(zhǎng)和是( 。
A. 4mB. 2(m+n)C. 4nD. 4(m﹣n)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,數(shù)軸上兩點(diǎn)所對(duì)應(yīng)的數(shù)分別是和.
(1)填空: , ;
(2)數(shù)軸上是否存在點(diǎn),點(diǎn)在點(diǎn)的右側(cè),且點(diǎn)到點(diǎn)的距離是點(diǎn)到點(diǎn)的距離的2倍?若存在,請(qǐng)求出點(diǎn)表示的數(shù);若不存在,請(qǐng)說(shuō)明理由;
(3)點(diǎn)以每秒2個(gè)單位的速度從點(diǎn)出發(fā)向左運(yùn)動(dòng),同時(shí)點(diǎn)以每秒3個(gè)單位的速度從點(diǎn)出發(fā)向右運(yùn)動(dòng),點(diǎn)以每秒4個(gè)單位的速度從原點(diǎn)點(diǎn)出發(fā)向左運(yùn)動(dòng).若為的中點(diǎn),當(dāng)時(shí),求兩點(diǎn)之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知線段,點(diǎn)是線段的中點(diǎn),先按要求畫(huà)圖形,再解決問(wèn)題.
(1)延長(zhǎng)線段至點(diǎn),使;延長(zhǎng)線段至點(diǎn),使;(尺規(guī)作圖,保留作圖痕跡)
(2)求線段的長(zhǎng)度;
(3)若點(diǎn)是線段的中點(diǎn),求線段的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,E為邊CD上一點(diǎn),將△ADE沿AE折疊至△AD′E處,AD′與CE交于點(diǎn)F.若∠B=52°,∠DAE=20°,則∠FED′的大小為_______.
A. 36° B. 52° C. 48° D. 30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠BAC 的角平分線與 BC 的垂直平分線交于點(diǎn) D,DE⊥AB, DF⊥AC,垂足分別為 E,F(xiàn).若 AB=10,AC=8,求 BE 長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,四邊形OABC是長(zhǎng)方形,O為原點(diǎn),點(diǎn)A在x軸上,點(diǎn)C在y軸上且A(10,0),C(0,6),點(diǎn)D在AB邊上,將△CBD沿CD翻折,點(diǎn)B恰好落在OA邊上點(diǎn)E處.
(1)求點(diǎn)E的坐標(biāo);
(2)求折痕CD所在直線的函數(shù)表達(dá)式;
(3)請(qǐng)你延長(zhǎng)直線CD交x軸于點(diǎn)F. ①求△COF的面積;
②在x軸上是否存在點(diǎn)P,使S△OCP=S△COF?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com