【題目】小明做用頻率估計概率的試驗時,根據(jù)統(tǒng)計結(jié)果,繪制了如圖所示的折線統(tǒng)計圖,則符合這一結(jié)果的試驗最有可能的是( 。

A. 任意買一張電影票,座位號是2的倍數(shù)的概率

B. 一副去掉大小王的撲克牌,洗勻后,從中任抽一張牌的花色是紅桃

C. 拋一個質(zhì)地均勻的正方體骰子,落下后朝上的面點數(shù)是3

D. 一個不透明的袋子中有4個白球、1個黑球,它們除了顏色外都相同,從中抽到黑球

【答案】C

【解析】

根據(jù)統(tǒng)計圖可知,試驗結(jié)果在0.17附近波動,即其概率P0.17,計算四個選項的概率,約為0.17者即為正確答案.

A、任意買一張電影票,座位號是2的倍數(shù)的概率為,故A選項錯誤;

B、一副去掉大小王的撲克牌,洗勻后,從中任抽一張牌的花色是紅桃的概率是,故B選項錯誤;

C、拋一個質(zhì)地均勻的正方體骰子,朝上的面點數(shù)是3的概率是0.17,故C選項正確;

D、一個不透明的袋子中有4個白球、1個黑球,它們除了顏色外都相同,從中抽到黑球的概率為,故D選項錯誤,

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A、B兩點,與y軸交于點C,對稱軸為直線x=﹣1,點B的坐標(biāo)為(1,0),則下列結(jié)論:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正確的結(jié)論有( )個.

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,E、F分別是CD、BC上的點.若∠AEF=90°,則一定有( )

A.△ADE∽△ECF
B.△BCF∽△AEF
C.△ADE∽△AEF
D.△AEF∽△ABF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,對角線ACBD交于點O,下列各組條件,其中不能判定四邊形ABCD是平行四邊形的是( 。

A. OAOC,OBODB. OAOCABCD

C. ABCD,OAOCD. ADB=∠CBD,∠BAD=∠BCD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線軸交于兩點,與軸交于點.

1)求此拋物線的解析式;

2)設(shè)是線段上的動點,作,連接,當(dāng)的面積是面積的2倍時,求點的坐標(biāo);

3)若為拋物線上、兩點間的一個動點,過軸的平行線,交,當(dāng)點運動到什么位置時,線段的值最大,并求此時點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“2018年西安女子半程馬拉松的賽事有兩項:A女子半程馬拉松;B、“5公里女子健康跑.小明對部分參賽選手作了如下調(diào)查:

調(diào)查總?cè)藬?shù)

50

100

200

300

400

500

參加“5公里女子健康跑人數(shù)

18

45

79

120

160

b

參加“5公里女子健康跑頻率

0.360

a

0.395

0.400

0.400

0.400

1)計算表中ab的值;

2)在圖中,畫出參賽選手參加“5公里女子健康跑的頻率的折線統(tǒng)計圖;

3)從參賽選手中任選一人,估計該參賽選手參加“5公里女子健康跑的概率(精確到0.1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=8cm,BC=16cm,點P從點A出發(fā)沿AB邊想向點B以2cm/s的速度移動,點Q從點B出發(fā)沿BC邊向點C以4cm/s的速度移動,如果P、Q同時出發(fā),經(jīng)過幾秒后△PBQ和△ABC相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,ACBC,點DAB中點.∠GDH90°,∠GDH繞點D旋轉(zhuǎn),DG,DH分別與邊ACBC交于E,F兩點.下列結(jié)論:AE+BFAC,AE2+BF2EF2S四邊形CEDFSABC,DEF始終為等腰直角三角形.其中正確的是(  )

A. ①②③④ B. ①②③ C. ①④ D. ②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:O是坐標(biāo)原點,P(m,n)(m>0)是函數(shù)y= (k>0)上的點,過點P作直線PA⊥OP于P,直線PA與x軸的正半軸交于點A(a,0)(a>m).設(shè)△OPA的面積為s,且s=1+

(1)當(dāng)n=1時,求點A的坐標(biāo);
(2)若OP=AP,求k的值;
(3)設(shè)n是小于20的整數(shù),且k≠ ,求OP2的最小值.

查看答案和解析>>

同步練習(xí)冊答案