【題目】如圖,已知A,B是反比例函數y=(k>0,x>0)圖象上的兩點,BC∥x軸,交y軸于點C,動點P從坐標原點O出發(fā),沿O→A→B→C(圖中“→”所示路線)勻速運動,終點為C,過P作PM⊥x軸,垂足為M.設三角形OMP的面積為S,P點運動時間為t,則S關于x的函數圖象大致為( )
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OCDE的頂點C和E分別在y軸的正半軸和x軸的正半軸上,OC=8,OE=17,拋物線y=x2﹣3x+m與y軸相交于點A,拋物線的對稱軸與x軸相交于點B,與CD交于點K.
(1)將矩形OCDE沿AB折疊,點O恰好落在邊CD上的點F處.
①點B的坐標為( 、 ),BK的長是 ,CK的長是 ;
②求點F的坐標;
③請直接寫出拋物線的函數表達式;
(2)將矩形OCDE沿著經過點E的直線折疊,點O恰好落在邊CD上的點G處,連接OG,折痕與OG相交于點H,點M是線段EH上的一個動點(不與點H重合),連接MG,MO,過點G作GP⊥OM于點P,交EH于點N,連接ON,點M從點E開始沿線段EH向點H運動,至與點N重合時停止,△MOG和△NOG的面積分別表示為S1和S2,在點M的運動過程中,S1S2(即S1與S2的積)的值是否發(fā)生變化?若變化,請直接寫出變化范圍;若不變,請直接寫出這個值.
溫馨提示:考生可以根據題意,在備用圖中補充圖形,以便作答.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,∠MAN=90°,射線AE在這個角的內部,點B、C分別在∠MAN的邊AM、AN上,且AB=AC,CF⊥AE于點F,BD⊥AE于點D.求證:△ABD≌△CAF;
(2)如圖2,點B、C分別在∠MAN的邊AM、AN上,點E、F都在∠MAN內部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,且∠1=∠2=∠BAC.求證:△ABE≌△CAF;
(3)如圖3,在△ABC中,AB=AC,AB>BC.點D在邊BC上,CD=2BD,點E、F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為15,求△ACF與△BDE的面積之和.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=x+4與x軸、y軸分別交于點A和點B,點C、D分別為線段AB、OB的中點,點P為OA上一動點,PC+PD值最小時點P的坐標為( )
A.(﹣3,0) B.(﹣6,0) C.(﹣,0) D.(﹣,0)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線與x軸交于A(﹣1,0),B(4,0),與y軸交于C(0,﹣2).
(1)求拋物線的解析式;
(2)H是C關于x軸的對稱點,P是拋物線上的一點,當△PBH與△AOC相似時,求符合條件的P點的坐標(求出兩點即可);
(3)過點C作CD∥AB,CD交拋物線于點D,點M是線段CD上的一動點,作直線MN與線段AC交于點N,與x軸交于點E,且∠BME=∠BDC,當CN的值最大時,求點E的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】操作探究:已知在紙面上有一數軸(如圖所示).
操作一:
(1)折疊紙面,使1表示的點與-1表示的點重合,則-3表示的點與________表示的點重合;
操作二:
(2)折疊紙面,使-1表示的點與3表示的點重合,回答以下問題:
①5表示的點與數________表示的點重合;
②若數軸上A、B兩點之間距離為11(A在B的左側),且A、B兩點經折疊后重合,求A、B兩點表示的數是多少.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com