如圖,將矩形ABCD沿直線EF折疊,使點(diǎn)C與點(diǎn)A重合,折痕交AD于點(diǎn)E、交BC于點(diǎn)F,連接AF、CE.
(1)求證:四邊形AFCE為菱形;
(2)設(shè)AE=a,ED=b,DC=c.請(qǐng)寫出一個(gè)a、b、c三者之間的數(shù)量關(guān)系式.
(1)證明:∵四邊形ABCD是矩形,∴AD∥BC,∴∠AEF=∠EFC。
由折疊的性質(zhì),可得:∠AEF=∠CEF,AE=CE,AF=CF,∴∠EFC=∠CEF。
∴CF=CE。∴AF=CF=CE=AE!嗨倪呅蜛FCE為菱形。
(2)解:a、b、c三者之間的數(shù)量關(guān)系式為:a2=b2+c2。理由如下:
由折疊的性質(zhì),得:CE=AE。
∵四邊形ABCD是矩形,∴∠D=90°。
∵AE=a,ED=b,DC=c,∴CE=AE=a。
在Rt△DCE中,CE2=CD2+DE2,
∴a、b、c三者之間的數(shù)量關(guān)系式可寫為:a2=b2+c2。
【解析】翻折變換(折疊問題),矩形的性質(zhì),折疊的性質(zhì),平等的性質(zhì),菱形的判定,勾股定理。
【分析】(1)由矩形ABCD與折疊的性質(zhì),易證得△CEF是等腰三角形,即CE=CF,即可證得AF=CF=CE=AE,即可得四邊形AFCE為菱形。
(2)由折疊的性質(zhì),可得CE=AE=a,在Rt△DCE中,利用勾股定理即可求得:a、b、c三者之間的數(shù)量關(guān)系式為:a2=b2+c2。(答案不唯一)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A、15° | B、20° | C、25° | D、30° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com