【題目】如圖,△ABC中,D是BC上的一點,若AB=10,BD=6,AD=8,AC=17,求△ABC的面積.

【答案】解:∵BD2+AD2=62+82=102=AB2 , ∴△ABD是直角三角形,
∴AD⊥BC,
在Rt△ACD中, ,
∴SABC=
因此△ABC的面積為84.
答:△ABC的面積是84
【解析】根據(jù)AB=10,BD=6,AD=8,利用勾股定理的逆定理求證△ABD是直角三角形,再利用勾股定理求出CD的長,然后利用三角形面積公式即可得出答案.
【考點精析】利用勾股定理的概念和勾股定理的逆定理對題目進行判斷即可得到答案,需要熟知直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;如果三角形的三邊長a、b、c有下面關系:a2+b2=c2,那么這個三角形是直角三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)下列條件,能作出平行四邊形的是( 。

A. 兩組對邊的長分別是35

B. 相鄰兩邊的長分別是35,且一條對角線長為9

C. 一邊的長為7,兩條對角線的長分別為68

D. 一邊的長為7,兩條對角線的長分別為65

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù)y=﹣ , 則有
①它的圖象在一、三象限:
②點(﹣2,4)在它的圖象上;
③當l<x<2時,y的取值范圍是﹣8<y<﹣4;
④若該函數(shù)的圖象上有兩個點A (x1 , y1),B(x2 , y2),那么當x1<x2時,y1<y2
以上敘述正確的是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某課題組為了解全市九年級學生對數(shù)學知識的掌握情況,在一次數(shù)學檢測中,從全市24000名九年級考生中隨機抽取部分學生的數(shù)學成績進行調查,并將調查結果繪制成如下圖表:

分數(shù)段

頻數(shù)

頻率

x<60

20

0.10

60≤x<70

28

0.14

70≤x<80

54

0.27

80≤x<90

a

0.20

90≤x<100

24

0.12

100≤x<110

18

b

110≤x<120

16

0.08

請根據(jù)以上圖表提供的信息,解答下列問題:
(1)表中a和b所表示的數(shù)分別為多少;
(2)請在圖中,補全頻數(shù)分布直方圖;

(3)如果把成績在90分以上(含90分)定為優(yōu)秀,那么該市24000名九年級考生數(shù)學成績?yōu)閮?yōu)秀的學生約有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=-x22xm+1交x軸于點A(a,0)和Bb,0),交y軸于點C,拋物線的頂點為D,下列四個判斷:①當x>0時,y>0;②若a=-1,則b=4;③拋物線上有兩點Px1y1)和Qx2,y2),若x1<1< x2,且x1x2>2,則y1> y2;④點C關于拋物線對稱軸的對稱點為E,點G,F分別在x軸和y軸上,當m=2時,四邊形EDFG周長的最小值為.其中正確判斷的序號是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算(-1)×(-2)的結果是(

A. 2. B. 1. C. -2. D. -3.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知9x2﹣mxy+16y2能運用完全平方公式分解因式,則m的值為(
A.12
B.±12
C.24
D.±24

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x22x+k=0

1)若方程有實數(shù)根,求k的取值范圍;

2)如果k是滿足條件的最大的整數(shù),且方程x22x+k=0一根的相反數(shù)是一元二次方程(m1x23mx7=0的一個根,求m的值及這個方程的另一根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是( 。

A. ﹣3(ab)=﹣3ab B. ﹣3(ab)=﹣3a+b

C. ﹣3(ab)=﹣3a﹣3b D. ﹣3(ab)=﹣3a+3b

查看答案和解析>>

同步練習冊答案