【題目】如圖,四邊形OABC各個頂點的坐標分別是O(0,0)、A(2,0)、B(4,2)、C(2,3),過點C與軸平行的直線EF與過點B與軸平行的直線EH交于點E.
求四邊形OABC的面積;
在線段EH上是否存在點P,使四邊形OAPC的面積為7?若不存在,說明理由,求點P的坐標.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中, , 是的角平分線,以為圓心, 為半徑作⊙.
()求證: 是⊙的切線.
()已知交⊙于點,延長交⊙于點, ,求的值.
()在()的條件下,設⊙的半徑為,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小麗和小明上山游玩,小麗乘纜車,小明步行,兩人相約在山頂?shù)睦|車終點會合.已知小明行走到纜車終點的路程是纜車到山頂?shù)木路長的2倍,小麗在小明出發(fā)后1小時才乘上纜車,纜車的平均速度為190m/min.設小明出發(fā)x min后行走的路程為y m.圖中的折線表示小明在整個行走過程中y與x的函數(shù)關系.
(1)小明行走的總路程是m,他途中休息了min.
(2)①當60≤x≤90時,求y與x的函數(shù)關系式;②當小麗到達纜車終點時,小明離纜車終點的路程是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在等腰Rt△ABC中,∠BAC=90°,點E在AC上(且不與點A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)請直接寫出線段AF,AE的數(shù)量關系;
(2)①將△CED繞點C逆時針旋轉(zhuǎn),當點E在線段BC上時,如圖②,連接AE,請判斷線段AF,AE的數(shù)量關系,并證明你的結(jié)論;
②若AB=2,CE=2,在圖②的基礎上將△CED繞點C繼續(xù)逆時針旋轉(zhuǎn)一周的過程中,當平行四邊形ABFD為菱形時,直接寫出線段AE的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列能判定兩個三角形全等的是( 。
①三條邊對應相等;②三個角對應相等;③兩邊和一個角對應相等;④兩角和它們的夾邊對應相等;⑤兩角和一個角的對邊對應相等.
A. ①②③ B. ①③⑤ C. ②③④ D. ①④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A(0,1),M(3,2),N(4,4) , 動點P從點A出發(fā),沿y
軸以每秒1個單位長的速度向上移動,且過點P的直線l:y=-x+b也隨之移動,設移動時間為 t 秒.(直線y = kx+b平移時k不變)
(1)當t=3時,求 l 的解析式;
(2)若點M,N位于l 的異側(cè),確定 t 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)【問題發(fā)現(xiàn)】
如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點D為BC的中點,以CD為一邊作正方形CDEF,點E恰好與點A重合,則線段BE與AF的數(shù)量關系為
(2)【拓展研究】
在(1)的條件下,如果正方形CDEF繞點C旋轉(zhuǎn),連接BE,CE,AF,線段BE與AF的數(shù)量關系有無變化?請僅就圖2的情形給出證明;
(3)【問題發(fā)現(xiàn)】
當正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點共線時候,直接寫出線段AF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com