【題目】如圖,在ABC中,DBC邊上的一點(diǎn),EAD的中點(diǎn),過A點(diǎn)作BC的平行線交CE的延長(zhǎng)線于點(diǎn)F,且AFBD,連接BF

1)求證:BDCD;

2)不在原圖添加字母和線段,對(duì)ABC只加一個(gè)條件使得四邊形AFBD是菱形,寫出添加條件并說明理由.

【答案】(1)

【解析】

1)由AFBC平行,利用兩直線平行內(nèi)錯(cuò)角相等得到一對(duì)角相等,再一對(duì)對(duì)頂角相等,且由EAD的中點(diǎn),得到AE=DE,利用AAS得到三角形AFE與三角形DCE全等,利用全等三角形的對(duì)應(yīng)邊相等即可得證;

2)根據(jù)有一組鄰邊相等的平行四邊形是菱形進(jìn)行判斷即可.

1)∵AFBC

∴∠AFE=∠DCE

EAD的中點(diǎn)

AEDE

在△AFE和△DCE中,

∴△AFE≌△DCEAAS),

AFCD,

AFBD

BDCD;

2)當(dāng)△ABC滿足:∠BAC90°時(shí),四邊形AFBD菱形,

理由如下:

AFBD,AFBD

∴四邊形AFBD是平行四邊形,

∵∠BAC90°,BDCD,

BDAD,

∴平行四邊形AFBD是菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+4(a0)軸交于點(diǎn)B (3 0) C (4 ,0)軸交于點(diǎn)A

(1) a = ,b = ;

(2) 點(diǎn)M從點(diǎn)A出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度沿ABB運(yùn)動(dòng),同時(shí),點(diǎn)N從點(diǎn)B出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度沿BCC運(yùn)動(dòng),當(dāng)點(diǎn)M到達(dá)B點(diǎn)時(shí),兩點(diǎn)停止運(yùn)動(dòng).t為何值時(shí),以BM、N為頂點(diǎn)的三角形是等腰三角形?

(3) 點(diǎn)P是第一象限拋物線上的一點(diǎn),若BP恰好平分∠ABC,請(qǐng)直接寫出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖AB⊙O的直徑,PA⊙O相切于點(diǎn)A,BP⊙O相交于點(diǎn)DC⊙O上的一點(diǎn),分別連接CB、CD,∠BCD60°.

(1)求∠ABD的度數(shù);

(2)AB6,求PD的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】快遞公司為提高快遞分揀的速度,決定購(gòu)買機(jī)器人來代替人工分揀.已知購(gòu)買甲型機(jī)器人1臺(tái),乙型機(jī)器人2臺(tái),共需14萬元;購(gòu)買甲型機(jī)器人2臺(tái),乙型機(jī)器人3臺(tái),共需24萬元.

(1)求甲、乙兩種型號(hào)的機(jī)器人每臺(tái)的價(jià)格各是多少萬元;

(2)已知甲型和乙型機(jī)器人每臺(tái)每小時(shí)分揀快遞分別是1200件和1000件,該公司計(jì)劃購(gòu)買這兩種型號(hào)的機(jī)器人共8臺(tái),總費(fèi)用不超過41萬元,并且使這8臺(tái)機(jī)器人每小時(shí)分揀快遞件數(shù)總和不少于8300件,則該公司有哪幾種購(gòu)買方案?哪個(gè)方案費(fèi)用最低,最低費(fèi)用是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).

1)求A、B、C的坐標(biāo);

2)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過點(diǎn)Mx軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過點(diǎn)PPQ∥AB交拋物線于點(diǎn)Q,過點(diǎn)QQN⊥x軸于點(diǎn)N.若點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQMN的周長(zhǎng)最大時(shí),求△AEM的面積;

3)在(2)的條件下,當(dāng)矩形PMNQ的周長(zhǎng)最大時(shí),連接DQ.過拋物線上一點(diǎn)Fy軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).FG=DQ,求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,正方形ABCD的邊長(zhǎng)為6,菱形EFGH的三個(gè)頂點(diǎn)EG,H分別在正方形ABCDABCD,DA上,AH=2

1)寫出菱形EFGH的邊長(zhǎng)的最小值;

2)請(qǐng)你探究點(diǎn)F到直線CD的距離為定值;

3)連接FC,設(shè)DG=xFCG的面積為y;

①求yx之間的函數(shù)關(guān)系式并求出y的取值范圍;

②當(dāng)x的長(zhǎng)為何值時(shí),點(diǎn)F恰好在正方形ABCD的邊上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)E、F分別是ABCD的邊BCAD的中點(diǎn).

1)求證:四邊形AECF是平行四邊形;

2)若BC10,∠BAC90°,求AECF的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2+bx+ca0)的對(duì)稱軸為直線x=﹣1,與x軸的一個(gè)交點(diǎn)A在點(diǎn)(﹣3,0)和(﹣20)之間,其部分圖象如圖,則下列結(jié)論:①4acb20;②2ab0;③a+b+c0;點(diǎn)Mx1y1)、Nx2y2)在拋物線上,若x1x2,則y1y2,其中正確結(jié)論的個(gè)數(shù)是(  )

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線與矩形AOBC的邊AC、BC分別交于點(diǎn)E,F,E34),且F8,)為拋物線的頂點(diǎn),將CEF沿著EF翻折,點(diǎn)C恰好落在邊OB上的點(diǎn)D處.

1)求該拋物線的解析式;

2)點(diǎn)P為線段ED上一動(dòng)點(diǎn),連接PF,當(dāng)PF平分∠EFD時(shí),求PD的長(zhǎng)度;

3)四邊形AODE1個(gè)單位/秒的速度沿著x軸向右運(yùn)動(dòng),當(dāng)點(diǎn)E與點(diǎn)C重合時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,運(yùn)動(dòng)后的四邊形AODEDEF重合部分的面積為S,請(qǐng)直接寫出St的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案