精英家教網 > 初中數學 > 題目詳情
如圖,在平面直角坐標系中,直線AD與拋物線y=-x2+bx+c交于A(-1,0)和D(2,3)兩點,點C、F分別為該拋物線與y軸的交點和頂點.
(1)試求b、c的值和拋物線頂點F的坐標;
(2)求△ADC的面積;
(3)已知,點Q是直線AD上方拋物線上的一個動點(點Q與A、D不重合),在點Q的運動過程中,有人說點Q、F重合時△AQD的面積最大,你認為其說法正確嗎?若你認為正確請求出此時△AQD的面積,若你認為不正確請說明理由,并求出△AQD的最大面積.
(1)∵拋物線過點A、D,
0=-a-b+c
3=-4+2b+c

∴b=2,c=3,C(0,3),
∴拋物線的解析式為y=-x2+2x+3,
∴y=-(x-1)2+4,
∴頂點F(1,4);

(2)如圖1,∵直線AD也過A、D兩點,
0=-k+b
3=2k+b

∴k=1,b=1,
∴直線AD的解析式為y=x+1,直線AD與y軸的交點E為(0,1),
則CE=3-1=2,
又∵點A、D分別到y軸的距離為1,2,
∴S△ADC=S△ACE+S△DCE=
1
2
×1×2+
1
2
×2×2=3;

(3)其說法不正確.
如圖2,過Q作QPy軸交直線AD于P,則Q(x,-x2+2x+3),P(x,x+1),
∴PQ=-x2+2x+3-x-1=-x2+x+2,
又∵點A、D分別到直線PQ的距離和為3.
∴S△AQD=S△AQP+S△DQP=
1
2
×PQ×3=
1
2
×(-x2+x+2)×3=-
3
2
x2+
3
2
x+3,
S△AQD=-
3
2
(x-
1
2
2+
27
8
,
∴當x=
1
2
時,S△AQD的最大值是
27
8

又∵F(1,4),當x=1時,代入直線AD的解析式y=x+1得:y=2,
∴S△AQD=
1
2
×3×(4-2)=3,
27
8
>3,
∴點Q、F重合時△AQD的面積最大的說法不正確,△AQD面積的最大值為
27
8
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+c與x軸交于A、B兩點,與y軸相交于點C.連接AC、BC,B、C兩點的坐標分別為B(1,0)、C(0,
3
)
,且當x=-10和x=8時函數的值y相等.
(1)求a、b、c的值;
(2)若點M、N同時從B點出發(fā),均以每秒1個單位長度的速度分別沿BA、BC邊運動,其中一個點到達終點時,另一點也隨之停止運動.連接MN,將△BMN沿MN翻折,當運動時間為幾秒時,B點恰好落在AC邊上的P處?并求點P的坐標;
(3)上下平移該拋物線得到新的拋物線,設新拋物線的頂點為D,對稱軸與x軸的交點為E,若△ODE與△OBC相似,求新拋物線的解析式.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,一次函數y=x+m圖象過點A(1,0),交y軸于點B,C為y軸負半軸上一點,且BC=2OB,過A、C兩點的拋物線交直線AB于點D,且CDx軸.
(1)求這條拋物線的解析式;
(2)觀察圖象,寫出使一次函數值小于二次函數值時x的取值范圍;
(3)在這條拋物線上是否存在一點M使得∠ADM為直角?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖(1),已知拋物線y=ax2+b與x軸交于A、B兩點(A在B的左邊),與y軸交于點M,點B的坐標為(4,0),點M的坐標為(0,-4).
(1)求拋物線的解析式;
(2)點N的坐標為(O,-3),作DN⊥y軸于點N,交拋物線于點D;直線y=-5垂直y軸于點C(0,-5);作DF垂直直線y=-5于點F,作BE垂直直線y=-5于點E.
①求線段的長度:MC=______,MN=______;BE=______,BN=______;DF=______,DN=______;
②若P是這條拋物線上任意一點,猜想:該點到直線y=-5的距離PH與該點到N點的距離PN有怎樣的數量關系?
(3)如圖(2),將N點改為拋物線y=x2-4x+3對稱軸上的一點,直線y=-5改為直線y=m(m<-1),已知對于拋物線y=x2-4x+3上的每一點,都有該點到直線y=m的距離等于該點到點N的距離,求m的值及點N的坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在直角坐標系中,A(-1,0),B(0,2),一動點P沿過B點且垂直于AB的射線BM運動,P點的運動速度為每秒1個單位長度,射線BM與x軸交于點C.
(1)求點C的坐標.
(2)求過點A、B、C三點的拋物線的解析式.
(3)若P點開始運動時,Q點也同時從C點出發(fā),以P點相同的速度沿x軸負方向向點A運動,t秒后,以P、Q、C為頂點的三角形是等腰三角形.(點P到點C時停止運動,點Q也同時停止運動),求t的值.
(4)在(2)(3)的條件下,當CQ=CP時,求直線OP與拋物線的交點坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,直線AC分別交x軸y軸于點A(8,0)、C,拋物線y=-
1
4
x2+bx+c(a≠0)經過A,B兩點;且OB=OC=
1
2
OA,一條與y軸重合的直線l以每秒2個單位長度的速度向右平移,交拋物線于點P,連接PB、設直線l移動的時間為t秒,
(1)求拋物線解析式;
(2)當0<t<4時,求四邊形PBCA的面積S(面積單位)與t(秒)的函數關系式,并求出四邊形PBCA的最大面積;
(3)在直線l的移動過程中,直線AC上是否存在一點Q,使得P、Q、B、A四點構成的四邊形是平行四邊形?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c與x軸交于不同的兩點A(x1,0)和B(x2,0)與y軸的正半軸交于點C,如果x1、x2是方程x2-x-6=0的兩個根(x1<x2)且△ABC的面積為
15
2

(1)求此拋物線解析式;
(2)求直線AC的解析式;
(3)求直線BC的解析式.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

在直角△ABC中,∠C=90°,直角邊BC與直角坐標系中的x軸重合,其內切圓的圓心坐標為P(0,1),若拋物線y=kx2+2kx+1的頂點為A.求:
(1)求拋物線的對稱軸、頂點坐標和開口方向;
(2)用k表示B點的坐標;
(3)當k取何值時,∠ABC=60°?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

已知正方形ABCD的邊長是1,E為CD邊的中點,P為正方形ABCD邊上的一個動點,動點P從點A出發(fā),沿A→B→C→E運動,到達E點.若點P經過的路程為自變量x,△APE的面積為函數y,則當y=
1
3
時,x的值等于______,______.

查看答案和解析>>

同步練習冊答案