【題目】閱讀下列一段文字,然后回答問(wèn)題.

已知在平面內(nèi)兩點(diǎn)P1(x1,y1)、P2(x2,y2),其兩點(diǎn)間的距離P1P2=,同時(shí),當(dāng)兩點(diǎn)所在的直線(xiàn)在坐標(biāo)軸或平行于坐標(biāo)軸或垂直于坐標(biāo)軸時(shí),兩點(diǎn)間距離公式可簡(jiǎn)化為|x2﹣x1|或|y2﹣y1|.

(1)已知A(2,4)、B(-3,-8),試求A、B兩點(diǎn)間的距離;

(2)已知A、B在平行于y軸的直線(xiàn)上,點(diǎn)A的縱坐標(biāo)為4,點(diǎn)B的縱坐標(biāo)為-1,試求A、B兩點(diǎn)間的距離;

(3)已知一個(gè)三角形各頂點(diǎn)坐標(biāo)為D(1,6)、E(-2,2)、F(4,2),你能判定此三角形的形狀嗎?說(shuō)明理由;

(4)平面直角坐標(biāo)中,在x軸上找一點(diǎn)P,使PD+PF的長(zhǎng)度最短,求出點(diǎn)P的坐標(biāo)以及PD+PF的最短長(zhǎng)度.

【答案】(1)13;(2)5;(3)(3)△DEF為等腰三角形,理由見(jiàn)解析;(4)點(diǎn)P的坐標(biāo)為(,0),此時(shí)PD+PF的最短長(zhǎng)度為

【解析】試題分析:(1)根據(jù)閱讀材料中的AB的坐標(biāo),利用兩點(diǎn)間的距離公式求出AB的距離即可;

2)根據(jù)兩點(diǎn)在平行于y軸的直線(xiàn)上,根據(jù)AB的縱坐標(biāo)求出AB的距離即可;

3)由三頂點(diǎn)坐標(biāo)求出DE,DFEF的長(zhǎng),即可判定此三角形形狀;

4)找出F關(guān)于x軸的對(duì)稱(chēng)點(diǎn)F′,連接DF′,與x軸交于P點(diǎn),此時(shí)PD+PF最短,設(shè)直線(xiàn)DF′的解析式為y=kx+b,將DF′的坐標(biāo)代入求出kb的值,確定出直線(xiàn)DF′解析式,令y=0求出x的值,確定出P坐標(biāo),由DF′坐標(biāo),利用兩點(diǎn)間的距離公式求出DF′的長(zhǎng),即為PD+PF的最短長(zhǎng)度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在學(xué)習(xí)一元一次方程的解法時(shí),我們經(jīng)常遇到這樣的試題:

解方程:”,請(qǐng)根據(jù)解題過(guò)程,在后面的括號(hào)內(nèi)寫(xiě)出變形依據(jù).

去分母,

去括號(hào),

移項(xiàng),

合并 合并同類(lèi)項(xiàng)法則

系數(shù)化為 1,

請(qǐng)你寫(xiě)出在進(jìn)行運(yùn)算時(shí)容易出錯(cuò)的地方(至少寫(xiě)出三個(gè)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB=90°,∠AOC∠AOB外的一個(gè)銳角,且∠AOC=30°,射線(xiàn)OM平分∠BOC,ON平分∠AOC.

(1)求∠MON的度數(shù);

(2)如果(1)中∠AOB=α,其他條件不變,求∠MON的度數(shù);

(3)如果(1)中∠AOC=β(β為銳角),其他條件不變,求∠MON的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=ax2﹣(a+1)x﹣3與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,∠BCO=45°,點(diǎn)M為線(xiàn)段BC上異于B、C的一動(dòng)點(diǎn),過(guò)點(diǎn)M與y軸平行的直線(xiàn)交拋物線(xiàn)于點(diǎn)Q,點(diǎn)R為線(xiàn)段QM上一動(dòng)點(diǎn),RP⊥QM交直線(xiàn)BC于點(diǎn)P.設(shè)點(diǎn)M的橫坐標(biāo)為m.

(1)求拋物線(xiàn)的表達(dá)式;
(2)當(dāng)m=2時(shí),△PQR為等腰直角三角形,求點(diǎn)P的坐標(biāo);
(3)①求PR+QR的最大值;②求△PQR面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用邊長(zhǎng)為12cm的正方形硬紙板做三棱柱盒子,每個(gè)盒子的側(cè)面為長(zhǎng)方形,底面為等邊三角形

(1)每個(gè)盒子需 個(gè)長(zhǎng)方形, 個(gè)等邊三角形;

(2)硬紙板以如圖兩種方法裁剪(裁剪后邊角料不再利用)

A方法:剪6個(gè)側(cè)面; B方法:剪4個(gè)側(cè)面和5個(gè)底面.

現(xiàn)有19張硬紙板,裁剪時(shí)x張用A方法,其余用B方法.

① 用x的代數(shù)式分別表示裁剪出的側(cè)面和底面的個(gè)數(shù);

② 若裁剪出的側(cè)面和底面恰好全部用完,問(wèn)能做多少個(gè)盒子?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】每年9月舉行“全國(guó)中學(xué)生數(shù)學(xué)聯(lián)賽”,成績(jī)優(yōu)異的選手可參加“全國(guó)中學(xué)生數(shù)學(xué)冬令營(yíng)”,冬令營(yíng)再選拔出50名優(yōu)秀選手進(jìn)入“國(guó)家集訓(xùn)隊(duì)”.第31界冬令營(yíng)已于2015年12月在江西省鷹譚一中成功舉行.現(xiàn)將脫穎而出的50名選手分成兩組進(jìn)行競(jìng)賽,每組25人,成績(jī)整理并繪制成如下的統(tǒng)計(jì)圖:

請(qǐng)你根據(jù)以上提供的信息解答下列問(wèn)題:

(1)請(qǐng)你將表格和條形統(tǒng)計(jì)圖補(bǔ)充完整:

平均數(shù)

中位數(shù)

眾數(shù)

方差

一組

74

__________

__________

104

二組

__________

__________

__________

72

(2)從本次統(tǒng)計(jì)數(shù)據(jù)來(lái)看,__________組比較穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人進(jìn)行摸牌游戲.現(xiàn)有三張形狀大小完全相同的牌,正面分別標(biāo)有數(shù)字2,3,5.將三張牌背面朝上,洗勻后放在桌子上.甲從中隨機(jī)抽取一張牌,記錄數(shù)字后放回洗勻,乙再隨機(jī)抽取一張.
(1)請(qǐng)用列表法或畫(huà)樹(shù)狀圖的方法,求兩人抽取相同數(shù)字的概率;
(2)若兩人抽取的數(shù)字和為2的倍數(shù),則甲獲勝;若抽取的數(shù)字和為5的倍數(shù),則乙獲勝.這個(gè)游戲公平嗎?請(qǐng)用概率的知識(shí)加以解釋?zhuān)?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y= (x>0)的圖象經(jīng)過(guò)A、B兩點(diǎn),菱形ABCD在第一象限內(nèi),邊BC于x軸平行.若A、B兩點(diǎn)的縱坐標(biāo)分別為3和1,則菱形ABCD的面積為(
A.2
B.4
C.2
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于A(1,6),B(3,n)兩點(diǎn).

(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;

(2)根據(jù)圖象寫(xiě)出不等式kx+b﹣>0的解集;

(3)若點(diǎn)M在x軸上、點(diǎn)N在y軸上,且以M、N、A、B為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)直接寫(xiě)出點(diǎn)M、N的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案