【題目】如圖,小紅用一張長方形紙片ABCD進(jìn)行折紙,已知該紙片寬AB8cm,BC10cm.當(dāng)小紅折疊時(shí),頂點(diǎn)D落在BC邊上的點(diǎn)F處(折痕為AE).想一想,此時(shí)EC有多長?

【答案】3cm

【解析】

試題根據(jù)矩形的性質(zhì)得AB=CD=8,BC=AD=10,∠B=∠C=90°,再根據(jù)折疊的性質(zhì)得AF=AD=10DE=EF,在Rt△ABF中,利用勾股定理計(jì)算出BF=6,則CF=BC﹣BF=4,設(shè)CE=x,則DE=EF=8﹣x,在Rt△CEF中利用勾股定理得到∴42+x2=8﹣x2,然后解方程即可.

試題解析:四邊形ABCD為矩形,∴AB=CD=8,BC=AD=10,∠B=∠C=90°.

長方形紙片ABCD折紙,頂點(diǎn)D落在BC邊上的點(diǎn)F處(折痕為AE),

∴AF=AD=10,DE=EF,

Rt△ABF中,AB=8,AF=10,∴BF=.

∴CF=BC﹣BF=4.

設(shè)CE=x,則DE=EF=8﹣x,

Rt△CEF中,∵CF2+CE2=EF2,

∴42+x2=8﹣x2,解得x=3.

∴EC的長為3cm

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ACBECD都是等腰直角三角形,ACB=∠ECD=90°DAB邊上一點(diǎn).

求證:(1)△ACE≌△BCD;(2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD,∠1=2,CF平分∠DCE

1)試判斷直線AEBF有怎樣的位置關(guān)系,并說明理由;

2)若∠1=80°,求∠3的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的是A,B,C,D三點(diǎn),按如下步驟作圖:①先分別以A,B兩點(diǎn)為圓心,以大于 AB的長為半徑作弧,兩弧相交于M、N兩點(diǎn),作直線MN;②再分別以B,C兩點(diǎn)為圓心,以大于 的長為半徑作弧,兩弧相交于G,H兩點(diǎn),作直線GH,GH與MN交于點(diǎn)P,若∠BAC=66°,則∠BPC等于( )

A.100°
B.120°
C.132°
D.140°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了搞好對(duì)“傳統(tǒng)文化學(xué)習(xí)”的宣傳活動(dòng),對(duì)本校部分學(xué)生(隨機(jī)抽查)進(jìn)行了一次相關(guān)知識(shí)了解程度的調(diào)查測試(成績分為A、B、C、D、E五個(gè)組,x表示測試成績).通過對(duì)測試成績的分析,得到如圖所示的兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)圖中提供的信息解答以下問題:

(1)參加調(diào)查測試的學(xué)生為人;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)本次調(diào)查測試成績中的中位數(shù)落在組內(nèi);
(4)若測試成績?cè)?0分以上(含80分)為優(yōu)秀,該中學(xué)共有學(xué)生2600人,請(qǐng)你根據(jù)樣本數(shù)據(jù)估計(jì)全校學(xué)生測試成績?yōu)閮?yōu)秀的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校興趣小組想測量一座大樓AB的高度.如圖,大樓前有一段斜坡BC,已知BC的長為12米,它的坡度i=1: .在離C點(diǎn)40米的D處,用測角儀測得大樓頂端A的仰角為37°,測角儀DE的高為1.5米,求大樓AB的高度約為多少米?(結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75, ≈1.73.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,O為直線AB上一點(diǎn)DOE=90°

1如圖1,AOC=130°,OD平分AOC

BOD的度數(shù)

請(qǐng)通過計(jì)算說明OE是否平分BOC

2如圖2,BOEAOE=27AOD的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為6的正方形ABCD中,E是邊CD的中點(diǎn),將△ADE沿AE對(duì)折至△AFE,延長EF交邊BC于點(diǎn)G,連接AG.

(1)求證:△ABG≌△AFG;(2)求BG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°BC=8cm,AC=6cm,點(diǎn)EBC的中點(diǎn),動(dòng)點(diǎn)PA點(diǎn)出發(fā)以每秒2cm的速度沿A→C→B運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間是t秒,那么當(dāng)t=____,△APE的面積等于6

查看答案和解析>>

同步練習(xí)冊(cè)答案