【題目】某工程隊(duì)用甲、乙兩臺(tái)隧道挖掘機(jī)從兩個(gè)方向挖掘同一條隧道,因?yàn)榈刭|(zhì)條件不同,甲、乙的挖掘速度不同,已知甲、乙同時(shí)挖掘天,可以挖米,若甲挖天,乙挖天可以挖掘米.

1)請(qǐng)問甲、乙挖掘機(jī)每天可以挖掘多少米?

2)若乙挖掘機(jī)比甲挖掘每小時(shí)多挖掘米,甲、乙每天挖掘的時(shí)間相同,求甲每小時(shí)挖掘多少米?

3)若隧道的總長(zhǎng)為米,甲、乙挖掘機(jī)工作天后,因?yàn)榧淄诰驒C(jī)進(jìn)行設(shè)備更新,乙挖掘機(jī)設(shè)備老化,甲比原來每天多挖米,同時(shí)乙比原來少挖.最終,甲、乙兩臺(tái)挖掘機(jī)在相同時(shí)間里各完成隧道總長(zhǎng)的一半,請(qǐng)用含,的代數(shù)式表示

【答案】1)甲每天挖米,乙每天挖米;(2)甲每小時(shí)挖米;(3

【解析】

1)設(shè)甲、乙每天分別挖xy米.等量關(guān)系:3(甲+乙)=216米、甲+乙=270;
2)設(shè)甲每小時(shí)挖n米,則乙每小時(shí)挖(n1)米,關(guān)鍵描述語:甲、乙每天挖掘的時(shí)間相同;
3)由題意可知b天后甲完成30b米,剩余米,乙完成42b米,剩余米,關(guān)鍵描述語:甲、乙兩臺(tái)挖掘機(jī)在相同時(shí)間里各完成隧道總長(zhǎng)的一半.

解:(1)設(shè)甲、乙每天分別挖工,米,

,

解得

甲每天挖米,乙每天挖米.

2)設(shè)甲每小時(shí)挖米,則乙每小時(shí)挖米.

,

解得,

經(jīng)檢驗(yàn)是原方程的解,

甲每小時(shí)挖米.

3)由題意可知天后甲完成米,剩余米,乙完成米,剩余

化簡(jiǎn)得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中.


1)若點(diǎn)EF分別在AB、AD上,且AE=DF.試判斷DECF的數(shù)量及位置關(guān)系,并說明理由;
2)若P、QM、N是正方形ABCD各邊上的點(diǎn),PQMN相交,且PQ=MN,問PQMN成立嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計(jì)劃購進(jìn)一批電腦和電子白板,經(jīng)過市場(chǎng)考察得知,購買1臺(tái)電腦和2臺(tái)電子白板需要3.5萬元,購買2臺(tái)電腦和1臺(tái)電子白板需要2.5萬元.

1)求每臺(tái)電腦、每臺(tái)電子白板各多少萬元?

2)根據(jù)學(xué)校實(shí)際,需購進(jìn)電腦和電子白板共30臺(tái),總費(fèi)用不超過30萬元,但不低于28萬元,該校有幾種購買方案?

3)上面的哪種方案費(fèi)用最低?按費(fèi)用最低方案購買需要多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過,兩點(diǎn),與x軸交于另一點(diǎn)B

求此拋物線的解析式;

若拋物線的頂點(diǎn)為M,點(diǎn)P為線段OB上一動(dòng)點(diǎn)不與點(diǎn)B重合,點(diǎn)Q在線段MB上移動(dòng),且,設(shè)線段,,求x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;

在同一平面直角坐標(biāo)系中,兩條直線分別與拋物線交于點(diǎn)E、G,與中的函數(shù)圖象交于點(diǎn)F、問四邊形EFHG能否成為平行四邊形?若能,求mn之間的數(shù)量關(guān)系;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在O中,直徑AB=2,CA切O于A,BC交O于D,若C=45°,則

(1)BD的長(zhǎng)是   

(2)求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知在中,BE平分AC于點(diǎn)E,AB于點(diǎn)D,,則的度數(shù)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:BD的直徑,O為圓心,點(diǎn)A為圓上一點(diǎn),過點(diǎn)B的切線交DA的延長(zhǎng)線于點(diǎn)F,點(diǎn)C上一點(diǎn),且,連接BCAD于點(diǎn)E,連接AC

如圖1,求證:

如圖2,點(diǎn)H內(nèi)部一點(diǎn),連接OH,CH時(shí),求證:

的條件下,若,的半徑為10,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中.BC5cm,BPCP分別是∠ABC和∠ACB的平分線,且PDAB,PEAC,則△PDE的周長(zhǎng)是______cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,,對(duì)角線AC平分

如圖1,若,,探究AD、AB與對(duì)角線AC三者之間的數(shù)量關(guān)系,寫出結(jié)論,不必證明.

如圖2若將中的條件“”去掉,中的結(jié)論是否還成立?并證明你的結(jié)論;

如圖3,若,試探究AD、AB與對(duì)角線AC三者之間的數(shù)量關(guān)系,寫出結(jié)論,不必證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案