【題目】如圖,AN是⊙M的直徑,NB∥x軸,AB交⊙M于點C.
(1)若點A(0,6),N(0,2),∠ABN=30°,求點B的坐標(biāo);
(2)若D為線段NB的中點,求證:直線CD是⊙M的切線.

【答案】
(1)解:∵A的坐標(biāo)為(0,6),N(0,2),

∴AN=4,

∵∠ABN=30°,∠ANB=90°,

∴AB=2AN=8,

∴由勾股定理可知:NB= = ,

∴B( ,2).


(2)解:連接MC,NC

∵AN是⊙M的直徑,

∴∠ACN=90°,

∴∠NCB=90°,

在Rt△NCB中,D為NB的中點,

∴CD= NB=ND,

∴∠CND=∠NCD,

∵M(jìn)C=MN,

∴∠MCN=∠MNC,

∵∠MNC+∠CND=90°,

∴∠MCN+∠NCD=90°,

即MC⊥CD.

∴直線CD是⊙M的切線.


【解析】(1)在Rt△ABN中,求出AN、AB即可解決問題;(2)連接MC,NC.只要證明∠MCD=90°即可;
【考點精析】根據(jù)題目的已知條件,利用切線的判定定理的相關(guān)知識可以得到問題的答案,需要掌握切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,AC=5cm,BC=12cm,∠ACB=90°,把Rt△ABC所在的直線旋轉(zhuǎn)一周得到一個幾何體,則這個幾何體的側(cè)面積為(
A.60πcm2
B.65πcm2
C.120πcm2
D.130πcm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校教學(xué)樓AB后方有一斜坡,已知斜坡CD的長為12米,坡角α為60°,根據(jù)有關(guān)部門的規(guī)定,∠α≤39°時,才能避免滑坡危險,學(xué)校為了消除安全隱患,決定對斜坡CD進(jìn)行改造,在保持坡腳C不動的情況下,學(xué)校至少要把坡頂D向后水平移動多少米才能保證教學(xué)樓的安全?(結(jié)果取整數(shù))
(參考數(shù)據(jù):sin39°≈0.63,cos39°≈0.78,tan39°≈0.81, ≈1.41, ≈1.73, ≈2.24)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A>∠B.
(1)作邊AB的垂直平分線DE,與AB,BC分別相交于點D,E(用尺規(guī)作圖,保留作圖痕跡,不要求寫作法);
(2)在(1)的條件下,連接AE,若∠B=50°,求∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】美麗的黃河宛如一條玉帶穿城而過,沿河兩岸的濱河路風(fēng)情線是蘭州最美的景觀之一.?dāng)?shù)學(xué)課外實踐活動中,小林在南濱河路上的A,B兩點處,利用測角儀分別對北岸的一觀景亭D進(jìn)行了測量.如圖,測得∠DAC=45°,∠DBC=65°.若AB=132米,求觀景亭D到南濱河路AC的距離約為多少米?(結(jié)果精確到1米,參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在矩形ABCD中,∠DAC=65°,點E是CD上一點,BE交AC于點F,將△BCE沿BE折疊,點C恰好落在AB邊上的點C′處,則∠AFC′=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABD是⊙O的內(nèi)接三角形,E是弦BD的中點,點C是⊙O外一點且∠DBC=∠A,連接OE延長與圓相交于點F,與BC相交于點C.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為6,BC=8,求弦BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則 的值為; 的取值范圍為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形紙片ABCD中,AB=6,BC=8.
(1)如圖①,將矩形紙片沿AN折疊,點B落在對角線AC上的點E處,求BN的長;

(2)如圖②,點M為AB上一點,將△BCM沿CM翻折至△ECM,ME與AD相交于點G,CE與AD相交于點F,且AG=GE,求BM的長;

(3)如圖③,將矩形紙片ABCD折疊,使頂點B落在AD邊上的點E處,折痕所在直線同時經(jīng)過AB、BC(包括端點),設(shè)DE=x,請直接寫出x的取值范圍:

查看答案和解析>>

同步練習(xí)冊答案