【題目】解答題
(1)作△ABC的外接圓;
(2)若AC=BC,AB=8,C到AB的距離是2,求△ABC的外接圓半徑.

【答案】
(1)解:如圖1,⊙O為所求;


(2)解:連結(jié)OA,作CD⊥AB于D,如圖2,設(shè)⊙O的半徑為r,

∵AC=BC,

∴AD=BD=4,

∴點(diǎn)O在CD上,

∴OD=CD﹣OC=8﹣r,

在Rt△OAD中,∵OD2+AD2=OA2,

∴(r﹣2)2+42=r2,解得r=5,

即△ABC的外接圓半徑為5


【解析】(1)如圖1,分別作AB和BC的垂直平分線,兩垂直平分線相交于點(diǎn)O,連結(jié)OB,然后以O(shè)B為半徑作⊙O即可;(2)連結(jié)OA,作CD⊥AB于D,如圖2,設(shè)⊙O的半徑為r,根據(jù)等腰三角形的性質(zhì)得AD=BD=4,再利用垂徑定理的推論可判斷點(diǎn)O在CD上,則OD=CD﹣OC=8﹣r,然后利用勾股定理得到(r﹣2)2+42=r2 , 再解方程即可.
【考點(diǎn)精析】本題主要考查了三角形的外接圓與外心的相關(guān)知識點(diǎn),需要掌握過三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,我國兩艘海監(jiān)船A,B在南海海域巡航,某一時(shí)刻,兩船同時(shí)收到指令,立即前往救援遇險(xiǎn)拋錨的漁船C,此時(shí),B船在A船的正南方向5海里處,A船測得漁船C在其南偏東45°方向,B船測得漁船C在其南偏東53°方向,已知A船的航速為30海里/小時(shí),B船的航速為25海里/小時(shí),問C船至少要等待多長時(shí)間才能得到救援?(參考數(shù)據(jù):sin53°≈ ,cos53°≈ ,tan53°≈ , ≈1.41)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】舟山市2010﹣2014年社會(huì)消費(fèi)品零售總額及增速統(tǒng)計(jì)圖如圖:
請根據(jù)圖中信息,解答下列問題:
(1)求舟山市2010﹣2014年社會(huì)消費(fèi)品零售總額增速這組數(shù)據(jù)的中位數(shù).
(2)求舟山市2010﹣2014年社會(huì)消費(fèi)品零售總額這組數(shù)據(jù)的平均數(shù).
(3)用適當(dāng)?shù)姆椒A(yù)測舟山市2015年社會(huì)消費(fèi)品零售總額(只要求列式說明,不必計(jì)算出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點(diǎn).

(1)求這個(gè)二次函數(shù)的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點(diǎn)B,使銳角△AOB的面積等于3.求點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣bx+1(﹣1≤b≤1),當(dāng)b從﹣1逐漸變化到1的過程中,它所對應(yīng)的拋物線位置也隨之變動(dòng).下列關(guān)于拋物線的移動(dòng)方向的描述中,正確的是(
A.先往左上方移動(dòng),再往左下方移動(dòng)
B.先往左下方移動(dòng),再往左上方移動(dòng)
C.先往右上方移動(dòng),再往右下方移動(dòng)
D.先往右下方移動(dòng),再往右上方移動(dòng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:
(1)x2+3x﹣2=0
(2)(x+8)(x+1)=﹣12.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD中,AD∥BC,對角線AC,DB交于點(diǎn)O,如果SAOD=1,SBOC=3,那么SAOB=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四邊形ADEF是正方形,點(diǎn)B、C分別在邊AD、AF上,此時(shí)BD=CF,BD⊥CF成立.

(1)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°<θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.
(2)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長DB交CF于點(diǎn)H.
①求證:BD⊥CF.
②當(dāng)AB=2,AD=3 時(shí),求線段BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,拋物線y=ax2+3ax+c(a>0)與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0),OC=3OB.

(1)求拋物線的解析式;
(2)若點(diǎn)D是線段AC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案