【題目】如圖,在平面直角坐標系中,拋物線與軸交于兩點(點在點的左側(cè)),經(jīng)過點的直線與軸負半軸交于點,與拋物線的另一個交點為,且.
(1)直接寫出點的坐標,并求直線的函數(shù)表達式(其中用含的式子表示)
(2)點是直線上方的拋物線上的動點,若的面積的最大值為,求的值;
(3)設(shè)是拋物線的對稱軸上的一點,點在拋物線上,當以點為頂點的四邊形為矩形時,請直接寫出點的坐標.
【答案】(1)A; ;(2);(3)或
【解析】
(1)令y=0,即,解出x的值即可得出A點的坐標;根據(jù)表示出D點的坐標(4,5a),結(jié)合A點坐標利用待定系數(shù)法即可算出直線解析式;
(2)設(shè)點E的坐標,然后結(jié)合A點坐標利用待定系數(shù)法求出,再利用割補法表示出三角形ACE的面積,根據(jù)配方法求最值即可算出a的值;
(3)分別以AD為對角線或AD為邊進行分類討論,再結(jié)合矩形的對邊平行和一個內(nèi)角是90°,利用勾股定理計算出a的值,進而確定P點坐標.
(1)令y=0,則,解得x=-1或3,
∵點在點的左側(cè) ,
∴A;
如圖1,作DF⊥x軸于F點,
∴DF∥OC,
∴,
∵,OA=1,
∴OF=4,即D點坐標為(4,5a),將A點和D點坐標代入y=kx+b,得
∴直線
(2)如圖1,作EN⊥y軸于點N,設(shè)點E,,可得
∴
設(shè)AE與y軸交點為M,則M,
∴,NE=m,
∴,
即,
∵的面積的最大值為,
即
解得
(3)由,可得對稱軸為x=1,設(shè)P點坐標為(1,m),
①若AD為矩形一條邊,如圖2,
則,即,可得Q點橫坐標為-4,代入拋物線方程,
可得Q點坐標(-4,21a),∴,
∴P點坐標(1,26a),
∵四邊形ADPQ為矩形,∴∠ADP=90°,
∴,
∴,
∵,∴,
∴P點坐標為,
②若AD為矩形的一條對角線,如圖3,則AD的中點坐標為,
∴Q點坐標為,進而可得P點坐標為,
∵四邊形ADPQ為矩形,∴∠APD=90°,
∴,
∴,
∵,∴,
∴P點坐標為
綜上可得,P點坐標為或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用線段EG,FH將正方形ABCD按如圖1所示的方式分割成4個全等的四邊形,且AE=BF=CG=DH,tan∠HFC=2,再將這四個四邊形按如圖2所示的方式拼成一個大正方形IJKL,若設(shè)正方形ABCD的面積為S1,正方形IJKL的面積為S2.小四邊形MNPQ的面積為8,則 的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“創(chuàng)科集團”會議室內(nèi)的一個長為6米、寬為4米的矩形ABCD墻面需要進行裝飾,設(shè)計圖案如圖所示,將矩形ABCD墻面分割成3個區(qū)域,中間“十”字形區(qū)域甲的寬度均為1米,四個角為四個全等的直角三角形,△AEF,△BGH,△CMN,△DPQ為區(qū)域乙,剩下部分為區(qū)域丙,其中AE=BG=CN=DP,設(shè)EG=HM=NP=FQ=x(米)(1≤x≤3)
(1)當x=2時,求區(qū)域乙的面積;
(2)求區(qū)域丙的面積的最大值;
(3)為了圖案富有美感,設(shè)置區(qū)域乙與區(qū)域丙的面積之比為1:4,在區(qū)域甲、區(qū)域乙、區(qū)域丙分別嵌貼甲、乙、丙三種不同的裝飾板,這三種裝飾板每平方米的單價分別為a(百元),b(百元),c(百元)(a,b,c均為整數(shù),且6<a<10),若a+b+c=20,整個墻面嵌貼共花費了150(百元),求三種裝飾板每平方米的單價.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在⊙O中,直徑AB=6,BC是弦,∠ABC=30°,點P在BC上,點Q在⊙O上,且OP⊥PQ.
(1)如圖1,當PQ∥AB時,求PQ的長度;
(2)如圖2,當點P在BC上移動時,求PQ長的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“滑塊鉸鏈”是一種用于連接窗扇和窗框,使窗戶能夠開啟和關(guān)閉的連桿式活動鏈接裝置(如圖1).圖2是“滑塊鉸鏈”的平面示意圖,滑軌MN安裝在窗框上,懸臂DE安裝在窗扇上,支點B、C、D始終在一條直線上,已知托臂AC=20厘米,托臂BD=40厘米,支點C,D之間的距離是10厘米,張角∠CAB=60°.
(1)求支點D到滑軌MN的距離(精確到1厘米);
(2)將滑塊A向左側(cè)移動到A′,(在移動過程中,托臂長度不變,即AC=A′C′,BC=BC′)當張角∠C′A'B=45°時,求滑塊A向左側(cè)移動的距離(精確到1厘米).(備用數(shù)據(jù):≈1.41,≈1.73,≈2.45,≈2.65)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若平面直角坐標系內(nèi)的點M滿足橫、縱坐標都為整數(shù),則把點M叫做“整點”.例如:P(1,0)、Q(2,﹣2)都是“整點”.拋物線y=mx2﹣4mx+4m﹣2(m>0)與x軸交于點A、B兩點,若該拋物線在A、B之間的部分與線段AB所圍成的區(qū)域(包括邊界)恰有七個整點,則m的取值范圍是( 。
A. ≤m<1B. <m≤1C. 1<m≤2D. 1<m<2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知菱形A1B1C1D1的邊長為2,∠A1B1C1=60°,對角線A1C1,B1D1相交于點O.以點O為坐標原點,分別以O(shè)A1,OB1所在直線為x軸、y軸,建立如圖所示的直角坐標系.以B1D1為對角線作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2為對角線作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2為對角線作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此規(guī)律繼續(xù)作下去,在x軸的正半軸上得到點A1,A2,A3,…,An,則點An的坐標為____________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com