如圖,拋物線與x軸交于點(diǎn)A(﹣,0)、點(diǎn)B(2,0),與y軸交于點(diǎn)C(0,1),連接BC.
(1)求拋物線的函數(shù)關(guān)系式;
(2)點(diǎn)N為拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)N作NP⊥x軸于點(diǎn)P,設(shè)點(diǎn)N的橫坐標(biāo)為t(﹣<t<2),求△ABN的面積S與t的函數(shù)關(guān)系式;
(3)若﹣<t<2且t≠0時(shí)△OPN∽△COB,求點(diǎn)N的坐標(biāo).
解:(1)設(shè)拋物線的解析式為y=ax2+bx+c,由題可得:
,
解得:,
∴拋物線的函數(shù)關(guān)系式為y=﹣x2+x+1;
(2)當(dāng)﹣<t<2時(shí),yN>0,
∴NP==yN=﹣t2+t+1,
∴S=AB•PN
=×(2+)×(﹣t2+t+1)
=(﹣t2+t+1)
=﹣t2+t+;
(3)∵△OPN∽△COB,
∴=,
∴=,
∴PN=2PO.
①當(dāng)﹣<t<0時(shí),PN==yN=﹣t2+t+1,PO==﹣t,
∴﹣t2+t+1=﹣2t,
整理得:3t2﹣9t﹣2=0,
解得:t1=,t2=.
∵>0,﹣<<0,
∴t=,此時(shí)點(diǎn)N的坐標(biāo)為(,);
②當(dāng)0<t<2時(shí),PN==yN=﹣t2+t+1,PO==t,
∴﹣t2+t+1=2t,
整理得:3t2﹣t﹣2=0,
解得:t3=﹣,t4=1.
∵﹣<0,0<1<2,
∴t=1,此時(shí)點(diǎn)N的坐標(biāo)為(1,2).
綜上所述:點(diǎn)N的坐標(biāo)為(,)或(1,2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,有一塊邊長(zhǎng)為6cm的正三角形紙板,在它的三個(gè)角處分別截去一個(gè)彼此全等的箏形,再沿圖中的虛線折起,做成一個(gè)無(wú)蓋的直三棱柱紙盒,則該紙盒側(cè)面積的最大值是( 。
| A. | cm2 | B. | cm2 | C. | cm2 | D. | cm2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知E,F(xiàn)分別為正方形ABCD的邊BC,CD上的點(diǎn),AF,DE相交于點(diǎn)G,當(dāng)E,F(xiàn)分別為邊BC,CD的中點(diǎn)時(shí),有:①AF=DE;②AF⊥DE成立.
試探究下列問(wèn)題:
(1)如圖1,若點(diǎn)E不是邊BC的中點(diǎn),F(xiàn)不是邊CD的中點(diǎn),且CE=DF,上述結(jié)論①,②是否仍然成立?(請(qǐng)直接回答“成立”或“不成立”),不需要證明)
(2)如圖2,若點(diǎn)E,F(xiàn)分別在CB的延長(zhǎng)線和DC的延長(zhǎng)線上,且CE=DF,此時(shí),上述結(jié)論①,②是否仍然成立?若成立,請(qǐng)寫出證明過(guò)程,若不成立,請(qǐng)說(shuō)明理由;
(3)如圖3,在(2)的基礎(chǔ)上,連接AE和BF,若點(diǎn)M,N,P,Q分別為AE,EF,F(xiàn)D,AD的中點(diǎn),請(qǐng)判斷四邊形MNPQ是“矩形、菱形、正方形”中的哪一種,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
在平面直角坐標(biāo)系xOy中,過(guò)點(diǎn)P(0,2)作直線l:y=x+b(b為常數(shù)且b<2)的垂線,垂足為點(diǎn)Q,則tan∠OPQ=
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
將直尺和直角三角板按如圖方式擺放,已知∠1=30°,則∠2的大小是( 。
| A. | 30° | B. | 45° | C. | 60° | D. | 65° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在▱ABCD中,E、F為對(duì)角線AC上兩點(diǎn),且BE∥DF,請(qǐng)從圖中找出一對(duì)全等三角形: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體是( 。
| A. | 圓柱 | B. | 圓錐 | C. | 長(zhǎng)方體 | D. | 正方體 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
為進(jìn)一步推廣“陽(yáng)光體育”大課間活動(dòng),某中學(xué)對(duì)已開(kāi)設(shè)的A實(shí)心球,B立定跳遠(yuǎn),C跑步,D跳繩四種活動(dòng)項(xiàng)目的學(xué)生喜歡情況進(jìn)行調(diào)查,隨機(jī)抽取了部分學(xué)生,并將調(diào)查結(jié)果繪制成圖1,圖2的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中的信息解答下列問(wèn)題:
(1)請(qǐng)計(jì)算本次調(diào)查中喜歡“跑步”的學(xué)生人數(shù)和所占百分比,并將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;
(2)隨機(jī)抽取了5名喜歡“跑步”的學(xué)生,其中有3名女生,2名男生,現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生,請(qǐng)用畫樹(shù)狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com