【題目】如圖,在平面直角坐標(biāo)系中,RtABC三個頂點(diǎn)都在格點(diǎn)上,點(diǎn)A、B、C的坐標(biāo)分別為A﹣41),B﹣1,1),C﹣1,3)請解答下列問題:

1)畫出ABC關(guān)于原點(diǎn)O的中心對稱圖形A1B1C1,并寫出點(diǎn)C的對應(yīng)點(diǎn)C1的坐標(biāo);

2)畫出ABC繞原點(diǎn)O逆時針旋轉(zhuǎn)90°后得到的A2B2C2,并直接寫出點(diǎn)A旋轉(zhuǎn)至A2經(jīng)過的路徑長.

【答案】(1)(1,﹣3);(2)

【解析】試題分析:(1)關(guān)于原點(diǎn)中心對稱,橫縱坐標(biāo)取相反數(shù).(2)化出圖象,利用勾股定理求OA長,再求弧長.

試題解析:試題分析:

試題解析:

解:(1ABC關(guān)于原點(diǎn)O的中心對稱圖形A1B1C1如圖所示:

點(diǎn)C1的坐標(biāo)為(1,﹣3).

2ABC繞原點(diǎn)O逆時針旋轉(zhuǎn)90°后得到的A2B2C2如圖所示:

OA=

點(diǎn)A經(jīng)過的路徑長為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知點(diǎn)A、B是反比例函數(shù)y=﹣上在第二象限內(nèi)的分支上的兩個點(diǎn),點(diǎn)C(0,3),且△ABC滿足AC=BC,∠ACB=90°,則線段AB的長為__

【答案】

【解析】過點(diǎn)AADy軸于點(diǎn)D,過點(diǎn)BBEy軸于點(diǎn)E,過點(diǎn)AAFBE軸于點(diǎn)F如圖所示.

∵∠ACB=90°,

∴∠ACD+BCE=90°,

又∵ADy軸,BEy軸,

∴∠ACD+CAD=90°,BCE+CBE=90°,

∴∠ACD=CBEBCE=CAD

ACDCBE中,由,

ACDCBE(ASA).

設(shè)點(diǎn)B的坐標(biāo)為(m,﹣)(m<0),則E(0,﹣),點(diǎn)D(0,3﹣m),點(diǎn)A(﹣﹣3,3﹣m),

∵點(diǎn)A(﹣﹣3,3﹣m)在反比例函數(shù)y=﹣上,

,解得:m=3,m=2(舍去).

∴點(diǎn)A的坐標(biāo)為(﹣1,6),點(diǎn)B的坐標(biāo)為(﹣3,2),點(diǎn)F的坐標(biāo)為(﹣1,2),

∴BF=2,AF=4,

故答案為:2

點(diǎn)睛

過點(diǎn)AADy軸于點(diǎn)D,過點(diǎn)BBEy軸于點(diǎn)E,過點(diǎn)AAFBE軸于點(diǎn)F,根據(jù)角的計(jì)算得出ACD=CBEBCE=CAD,由此證出ACDCBE;再設(shè)點(diǎn)B的坐標(biāo)為(m,﹣),由三角形全等找出點(diǎn)A的坐標(biāo),將點(diǎn)A的坐標(biāo)代入到反比例函數(shù)解析式中求出m的值,將m的值代入A,B點(diǎn)坐標(biāo)即可得出點(diǎn)A,B的坐標(biāo),并結(jié)合點(diǎn)A,B的坐標(biāo)求出點(diǎn)F的坐標(biāo),利用勾股定理即可得出結(jié)論.

型】填空
結(jié)束】
18

【題目】二次函數(shù)y=x2+2m+1x+m2﹣1)有最小值﹣2,則m=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,點(diǎn)C、D是圓上兩點(diǎn),且OD∥AC,ODBC交于點(diǎn)E.

1)求證:EBC的中點(diǎn);

2)若BC8,DE3,求AB的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC 的頂點(diǎn)坐標(biāo)分別為A0-3),B3,-2),C2,-4).

1)在圖中作出△ABC關(guān)于x軸對稱的△A1B1C1

2)點(diǎn)C1的坐標(biāo)為:    

3ABC的周長為    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解

在平面直角坐標(biāo)系中,兩條直線,

①當(dāng)時,,且;②當(dāng)時,

類比應(yīng)用

1)已知直線,若直線與直線平行,且經(jīng)過點(diǎn),試求直線的表達(dá)式;

拓展提升

2)如圖,在平面直角坐標(biāo)系中,的頂點(diǎn)坐標(biāo)分別為:,試求出邊上的高所在直線的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果P 是正方形ABCD 內(nèi)的一點(diǎn),且滿足∠APBDPC180°,那么稱點(diǎn)P 是正方形 ABCD 對補(bǔ)點(diǎn)”.

1)如圖1,正方形ABCD 的對角線AC,BD 交于點(diǎn)M,求證:點(diǎn)M 是正方形ABCD 的對補(bǔ)點(diǎn);

2)如圖2,在平面直角坐標(biāo)系中,正方形ABCD 的頂點(diǎn)A11),C33.除對角線交點(diǎn)外,請?jiān)賹懗鲆粋該正方形的對補(bǔ)點(diǎn)的坐標(biāo),并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù) y=ax2+bx+c(a0)的圖象與 x 軸交于 AB 兩點(diǎn), y 軸交于點(diǎn) C且對稱軸為直線 x=1, 點(diǎn) B 的坐標(biāo)為(-1,0).則下面的五個結(jié)論:①2a+b=0;②abc>0;③當(dāng) y<0,x<-1 x>2;④c<4b;⑤ a+b>m(am+b)(m1),其中正確的個數(shù)是(

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知拋物線 y=ax2+bx+ca≠0)的頂點(diǎn)坐標(biāo)為 Q(2,﹣1),且與 y 軸交于點(diǎn) C(0,3), 與 x 軸交于 A、B 兩點(diǎn)(點(diǎn) A 在點(diǎn) B 的右側(cè)),點(diǎn) P 是拋物線上的一動點(diǎn),從點(diǎn) C 沿拋物線向 點(diǎn) A 運(yùn)動點(diǎn) P A 不重合),過點(diǎn) P PDy 軸,交 AC 于點(diǎn) D

(1)求該拋物線的函數(shù)關(guān)系式及 A、B 兩點(diǎn)的坐標(biāo);

(2)求點(diǎn) P 在運(yùn)動的過程中,線段 PD 的最大值;

(3)若點(diǎn) P 與點(diǎn) Q 重合,點(diǎn) E x 軸上,點(diǎn) F 在拋物線上,問是否存在以 A,P,E,F 為頂 點(diǎn)的平行四邊形?若存在,直接寫出點(diǎn) F 的坐標(biāo);若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校教學(xué)樓AB后方有一斜坡,已知斜坡CD的長為12米,坡角α為60°,根據(jù)有關(guān)部門的規(guī)定,∠α≤39°時,才能避免滑坡危險(xiǎn),學(xué)校為了消除安全隱患,決定對斜坡CD進(jìn)行改造,在保持坡腳C不動的情況下,學(xué)校至少要把坡頂D向后水平移動多少米才能保證教學(xué)樓的安全?(結(jié)果取整數(shù))

(參考數(shù)據(jù):sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)

查看答案和解析>>

同步練習(xí)冊答案