【題目】如圖,在ABCD中,,,,點(diǎn)E為CD上一動(dòng)點(diǎn),經(jīng)過A、C、E三點(diǎn)的交BC于點(diǎn)F.
(操作與發(fā)現(xiàn))
當(dāng)E運(yùn)動(dòng)到處,利用直尺與規(guī)作出點(diǎn)E與點(diǎn)F;保留作圖痕跡
在的條件下,證明:.
(探索與證明)
點(diǎn)E運(yùn)動(dòng)到任何一個(gè)位置時(shí),求證:;
(延伸與應(yīng)用)
點(diǎn)E在運(yùn)動(dòng)的過程中求EF的最小值.
【答案】作圖見解析;證明見解析;證明見解析; EF最小值為.
【解析】
當(dāng),此時(shí)AC是的直徑,作出AC的中點(diǎn)O后,以OA為半徑作出即可作出點(diǎn)E、F;
易知AC為直徑,則,,從而得證;
如圖,作,,若E在DN之間,由可知,,然后再證明∽,從而可知,若E在CN之間時(shí),同理可證;
由于A、F、C、E四點(diǎn)共圓,所以,由于四邊形ABCD為平行四邊形,,從而可證為等腰直角三角形,所以,由于,所以E與N重合時(shí),FE最。
如圖1所示,
如圖,易知AC為直徑,則,
則,
,
如圖,作,,若E在DN之間
由可知,
、F、C、E四點(diǎn)共圓,
,
,
,
,
∽
,
若E在CN之間時(shí),同理可證
、F、C、E四點(diǎn)共圓,
,
四邊形ABCD為平行四邊形,,
,
,
,
為等腰直角三角形,
,
,
與N重合時(shí),FE最小,
此時(shí),
在中,,則
由勾股定理可知:
此時(shí)EF最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車從A地出發(fā),沿同一路線駛向B地.甲車先出發(fā)勻速駛向B地,40min后,乙車出發(fā),勻速行駛一段時(shí)間后,在途中的貨站裝貨耗時(shí)半小時(shí).由于滿載貨物,為了行駛安全,速度減少了50km/h,結(jié)果與甲車同時(shí)到達(dá)B地.甲乙兩車距A地的路程y(km)與乙車行駛時(shí)間x(h)之間的函數(shù)圖象如圖所示,則下列說法中正確的有( )
①;②甲的速度是60km/h;③乙出發(fā)80min追上甲;④乙剛到達(dá)貨站時(shí),甲距B地180km.
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=4,E為BC中點(diǎn),AE⊥BC于點(diǎn)E,AF⊥CD于點(diǎn)F,CG∥AE,CG交AF于點(diǎn)H,交AD于點(diǎn)G.
(1)求菱形ABCD的面積;(2)求∠CHA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①是一個(gè)長為2m、寬為2n的長方形,沿圖中虛線用剪刀均分成四塊小長方形,然后按圖②的形狀拼成一個(gè)正方形.(1)請(qǐng)用兩種不同的方法求圖②中陰影部分的面積:
方法1: 方法2:
(2)觀察圖②請(qǐng)你寫出下列三個(gè)代數(shù)式:(m+n)2,(m﹣n)2,mn之間的等量關(guān)系. ;
(3)根據(jù)(2)題中的等量關(guān)系,解決:已知:a﹣b=5,ab=﹣6,求:(a+b)2的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩地相距480km,一輛貨車從甲地勻速駛往乙地,貨車出發(fā)一段時(shí)間后,一輛汽車從乙地勻速駛往甲地,設(shè)貨車行駛的時(shí)間為線段OA表示貨車離甲地的距離與xh的函數(shù)圖象;折線BCDE表示汽車距離甲地的距離與的函數(shù)圖象.
求線段OA與線段CD所表示的函數(shù)表達(dá)式;
若OA與CD相交于點(diǎn)F,求點(diǎn)F的坐標(biāo),并解釋點(diǎn)F的實(shí)際意義;
當(dāng)x為何值時(shí),兩車相距100千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
(1)求證:△ADC≌△CEB.
(2)AD=5cm,DE=3cm,求BE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們有時(shí)會(huì)碰上形如,,的式子,其實(shí)我們可以將其進(jìn)一步分母有理化.
形如的式子還可以用以下方法化簡(jiǎn):.(*)
(1)請(qǐng)用不同的方法化簡(jiǎn)(寫出化簡(jiǎn)過程):
(i)參照分母有理化的方法得______________________________;
(ii)參照(*)式的化簡(jiǎn)方法得______________________________.
(2)化簡(jiǎn):.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的面積為1cm2,對(duì)角線交于點(diǎn)O;以AB、AO為鄰邊作平行四邊形AOC1B,對(duì)角線交于點(diǎn)O1;以AB、AO1為鄰邊作平行四邊形AO1C2B…;依此類推,則平行四邊形AO2016C2017B的面積為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com