(2012•貴陽)如圖,在△ABA1中,∠B=20°,AB=A1B,在A1B上取一點C,延長AA1到A2,使得A1A2=A1C;在A2C上取一點D,延長A1A2到A3,使得A2A3=A2D;…,按此做法進行下去,∠An的度數(shù)為
80°
2n-1
80°
2n-1
分析:先根據(jù)等腰三角形的性質(zhì)求出∠BA1A的度數(shù),再根據(jù)三角形外角的性質(zhì)及等腰三角形的性質(zhì)分別求出∠CA2A1,∠DA3A2及∠EA4A3的度數(shù),找出規(guī)律即可得出∠An的度數(shù).
解答:解:∵在△ABA1中,∠B=20°,AB=A1B,
∴∠BA1A=
180°-∠B
2
=
180°-20°
2
=80°,
∵A1A2=A1C,∠BA1A是△A1A2C的外角,
∴∠CA2A1=
∠BA1A
2
=
80°
2
=40°;
同理可得,
∠DA3A2=20°,∠EA4A3=10°,
∴∠An=
80°
2n-1

故答案為:
80°
2n-1
點評:本題考查的是等腰三角形的性質(zhì)及三角形外角的性質(zhì),根據(jù)題意得出∠CA2A1,∠DA3A2及∠EA4A3的度數(shù),找出規(guī)律是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•貴陽)如圖,已知點A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個條件是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•貴陽)如圖,在⊙O中,直徑AB=2,CA切⊙O于A,BC交⊙O于D,若∠C=45°,則
(1)BD的長是
2
2
;
(2)求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•貴陽)如圖,一次函數(shù)y=k1x+b1的圖象l1與y=k2x+b2的圖象l2相交于點P,則方程組
y=k1x+b1
y=k2x+b2
的解是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•貴陽)如圖,在Rt△ABC中,∠ACB=90°,AB的垂直平分線DE交于BC的延長線于F,若∠F=30°,DE=1,則EF的長是( 。

查看答案和解析>>

同步練習冊答案