【題目】在平面直角坐標系 中,對于點 ,我們把點 叫做點 伴隨點.已知點 的伴隨點為 ,點 的伴隨點為 ,點 的伴隨點為 ,…,這樣依次得到點 , ,…, ,….若點 的坐標為(2,4),點 的坐標為 ( )
A.(-3,3)
B.(-2,-2)
C.(3,-1)
D.(2,4)

【答案】D
【解析】解:由A1(2,4),由定義依次可得:A2(-3,3)、A3(-2,-2)、A4 (3,-1)、A5(2,4)、A6(-3,3)……,由此可知4個一循環(huán),2017÷4=506……1,所以A2017的坐標為(2,4);故選D.
【考點精析】通過靈活運用數(shù)與式的規(guī)律,掌握先從圖形上尋找規(guī)律,然后驗證規(guī)律,應(yīng)用規(guī)律,即數(shù)形結(jié)合尋找規(guī)律即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如果a、b互為相反數(shù),x、y互為倒數(shù),那么(a+b)﹣xy_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的對角線OB,AC相交于點D,且BEAC,AEOB,

(1)求證:四邊形AEBD是菱形;

(2)如果OA=3,OC=2,求出經(jīng)過點E的反比例函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分8分)

如果二次函數(shù)的二次項系數(shù)為l,則此二次函數(shù)可表示為yx2pxq,我們稱[p,q]為此函數(shù)的特征數(shù),如函數(shù)yx22x3的特征數(shù)是[2,3]

1)若一個函數(shù)的特征數(shù)為[2,1],求此函數(shù)圖象的頂點坐標.

2)探究下列問題:若一個函數(shù)的特征數(shù)為[4,-1],將此函數(shù)的圖象先向右平移1個單位,再向上平移1個單位,求得到的圖象對應(yīng)的函數(shù)的特征數(shù).

若一個函數(shù)的特征數(shù)為[2,3],問此函數(shù)的圖象經(jīng)過怎樣的平移,才能使得到的圖象對應(yīng)的函數(shù)的特征數(shù)為[3,4]?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分10分)

一汽車租賃公司擁有某種型號的汽車100輛.公司在經(jīng)營中發(fā)現(xiàn)每輛車的月租金

x(元)與每月租出的車輛數(shù)(y)有如下關(guān)系:

x

4500

4000

3800

3200

y

70

80

84

96

(1)觀察表格,用所學過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識求出每月租出的車輛數(shù)y(輛)與每輛車的月租金x(元)之間的關(guān)系式.

(2)已知租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元. 每輛車的月租金定為多少元時,才能使公司獲得最大月收益?請求出公司的最大月收益是多少元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算(﹣3.5)+(+2.8)的結(jié)果是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是

A. “明天降雨的概率是80%”表示明天有80%的時間都在降雨

B. “拋一枚硬幣正面朝上的概率為表示每拋2次就有一次正面朝上

C. “彩票中獎的概率為1%”表示買100張彩票肯定會中獎

D. “拋一枚正方體骰子,朝上的點數(shù)為2的概率為表示隨著拋擲次數(shù)的增加,拋出朝上的點數(shù)為2”這一事件發(fā)生的頻率穩(wěn)定在附近

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從邊長為a的正方形中剪掉一個邊長為b的正方形(如圖1),然后將剩余部分拼成一個長方形(如圖2).
(1)上述操作能驗證的等式是;(請選擇正確的一個)
A.a2﹣2ab+b2=(a﹣b)2
B.a2﹣b2=(a+b)(a﹣b)
C.a2+ab=a(a+b)
(2)應(yīng)用你從(1)選出的等式,完成下列各題: ①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.
②計算:(1﹣ )(1﹣ )(1﹣ )…(1﹣ )(1﹣ ).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一個大圓盤中,鑲嵌著四個大小一樣的小圓盤,已知大小圓盤的半徑都是整數(shù),陰影部分的面積為5πcm2 , 請你求出大小兩個圓盤的半徑.

查看答案和解析>>

同步練習冊答案