如果一個三角形的三邊長分別為1,k,3,則化簡7-
4k2-36k+81
-|2k-3|
的結(jié)果是( 。
A、-5B、1
C、13D、19-4k
分析:首先根據(jù)三角形的三邊關(guān)系確定k的取值范圍,由此即可求出二次根式的值與絕對值的值,再計算即可解答.
解答:解:∵一個三角形的三邊長分別為1,k,3,
∴2<k<4,
又∵4k2-36k+81=(2k-9)2,
∴2k-9<0,2k-3>0,
∴原式=7-(9-2k)-(2k-3)=1.
故選B.
點(diǎn)評:本題主要考查二次根式的化簡、絕對值的化簡,熟練掌握化簡的方法是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如果一個三角形的三邊之比是1:2:
3
,判斷此三角形的形狀是
 
三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果一個三角形的三邊長分別為1、k、4.則化簡|2k-5|-
k2-12k+36
的結(jié)果是(  )
A、3k-11B、k+1
C、1D、11-3k

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

閱讀與解答:
古希臘的幾何學(xué)家海倫,在他的著作《度量》一書中,給出了下面一個公式:
如果一個三角形的三邊長分別為a,b,c,設(shè)p=
a+b+c
2
,則三角形的面積為S=
p(p-a)(p-b)(p-c)

請你解答:在△ABC中,BC=4,AC=5,AB=6,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

【閱讀理解】
“海倫(Heron)公式”:如果一個三角形的三邊長分別為a,b,c,設(shè)p=
a+b+c
2
,則三角形的面積為S=
p(p-a)(p-b)(p-c)

【問題解決】
(1)如圖,在△ABC中,BC=2.5,AC=6,AB=6.5.請用“海倫公式”求△ABC的面積.
(2)小怡同學(xué)認(rèn)為(1)中運(yùn)算太繁,并想到了一種不同的解法.你知道他想到了什么方法?請寫出來.

查看答案和解析>>

同步練習(xí)冊答案