【題目】如圖,在RtABC中,∠B=90°,BC>AB,在BC邊上取點(diǎn)D,使AB=BD,構(gòu)造正方形ABDEDEAC于點(diǎn)F,作EGACAC于點(diǎn)G,交BC于點(diǎn)H

(1)求證:AEF≌△EDH

(2)AB=3DH=2DF,求BC的長(zhǎng).

【答案】(1)證明見(jiàn)解析;(2)4.5

【解析】

1)根據(jù)正方形的性質(zhì),通過(guò)“角邊角”即可得證;

2)設(shè)DF=x,則DH=2x,由(1)可得ED=EF+DF=3x=AB,易證△DFC∽△BAC,則,求得DC=,進(jìn)而求得BC的長(zhǎng).

證明:(1)∵四邊形ABDE是正方形,

∴AE=DE∠AED=∠EDH=90°,

∵EG⊥AC

∴∠AGE=90°,

∴∠GAE+∠AEG=∠AEG+∠DEH=90°,

∴∠GAE=∠DEH

△AEF△EDH中,

,

∴△AEF≌△EDHASA);

(2)設(shè)DF=x,則DH=2x,

∵△AEF≌△EDH

∴EF=DH=2x,

∴ED=EF+DF=3x=AB,

四邊形ABDE是正方形,

∴AB∥DF,

∴△DFC∽△BAC

,

∵BD=3

∴DC=,

∴BC=BD+CD=3+=4.5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y軸交于點(diǎn)C0,2),它的頂點(diǎn)為D1,m),且.

1)求m的值及拋物線的表達(dá)式;

2)將此拋物線向上平移后與x軸正半軸交于點(diǎn)A,與y軸交于點(diǎn)B,且OA=OB.若點(diǎn)A是由原拋物線上的點(diǎn)E平移所得,求點(diǎn)E的坐標(biāo);

(3)在(2)的條件下,點(diǎn)P是拋物線對(duì)稱軸上的一點(diǎn)(位于x軸上方),且APB=45°.求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖①,②,在矩形ABCD中,AB=4,BC=8,P,Q分別是邊BCCD上的點(diǎn).

(1)如圖①,若APPQBP=2,求CQ的長(zhǎng);

(2)如圖②,若=2,且E,F,G分別為AP,PQ,PC的中點(diǎn),求四邊形EPGF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是圓O的一條弦,點(diǎn)O在線段AC上,AC=AB,OC=3,sinA=.求:(1)O的半徑長(zhǎng);(2)BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,E為邊CD的中點(diǎn),AEBD于點(diǎn)O,若SDOE=2,則平行四邊形ABCD的面積為( )

A. 8B. 12C. 16D. 24

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,以OB為直徑畫(huà)圓M,過(guò)D作⊙M的切線,切點(diǎn)為N,分別交ACBC于點(diǎn)E、F,已知AE=5,CE=3,則菱形ABCD的面積是( )

A. 24B. 20C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABO中,∠BAO90°AOAB,BO8,點(diǎn)A的坐標(biāo)(﹣8,0),點(diǎn)C在線段AO上以每秒2個(gè)單位長(zhǎng)度的速度由AO運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,連接BC,過(guò)點(diǎn)AADBC,垂足為點(diǎn)E,分別交BO于點(diǎn)F,交y軸于點(diǎn) D

1)用t表示點(diǎn)D的坐標(biāo)   ;

2)如圖1,連接CF,當(dāng)t2時(shí),求證:∠FCO=∠BCA;

3)如圖2,當(dāng)BC平分∠ABO時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在正方形ABCD中,以AB為邊向正方形外作等邊三角形ABE,連接CE、BD交于點(diǎn)G,連接AG,那么∠AGD的底數(shù)是______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A、D、C、F在同一條直線上,AD=CF,AB=DE,BC=EF.

(1)求證:ΔABC△DEF;

(2)若∠A=55°,B=88°,求∠F的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案