【題目】如圖,PA與⊙O相切于點(diǎn)A,過點(diǎn)A作AB⊥OP,垂足為C,交⊙O于點(diǎn)B.連接PB,AO,并延長AO交⊙O于點(diǎn)D,與PB的延長線交于點(diǎn)E.
(1)求證:PB是⊙O的切線;
(2)若OC=6,AC=8,求sinE的值.
【答案】(1)見解析;(2)
【解析】
(1)連接OB,先由等腰三角形的三線合一的性質(zhì)可得:OP是線段AB的垂直平分線,進(jìn)而可得:PA=PB,然后證明△PAO≌△PBO,進(jìn)而可得∠PBO=∠PAO=90°,PB是⊙O的切線;
(2)要求sinE,首先應(yīng)找出直角三角形,然后利用直角三角函數(shù)求解即可.而sinE既可放在中,也可放在中,所以利用相似三角形的性質(zhì)求出EP或EO的長即可解決問題
(1)證明:如圖,連接OB,
∵PO⊥AB,
∴AC=BC,則PO是線段AB的垂直平分線,
∴PA=PB,
在△PAO和△PBO中,
,
∴△PAO≌△PBO(SSS)
∴∠OBP=∠OAP,
∵PA是⊙O的切線,即PA⊥OA,
∴∠OAP=90°,
∴∠OBP=90°,即PB⊥OB,
∴PB是⊙O的切線;
(2)在Rt△ACO中,OC=6,AC=8,
∴AO=10,
如圖,連接BD,則∠ABD=90°,
∴BD∥PO,則BD=2OC=12,
在Rt△ACO與Rt△PAO中,
∠APO=∠APO,
∠PAO=∠ACO=90°,
∴△ACO△PAO,
∴,即
∴PO=,PA=,
∴PB=PA=,
∵BD∥PO,
∴△EPO∽△EBD,
∴,則,
∴,
解得:EB=,
∴PE=PB+EB=,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于的二次函數(shù).下列說法:①無論取何值,此二次函數(shù)圖象與必有兩個(gè)交點(diǎn);②無論取何值,圖象必過兩定點(diǎn),且兩定點(diǎn)之間的距離為;③當(dāng)時(shí),函數(shù)在時(shí),隨的增大而減;④當(dāng)時(shí),函數(shù)圖象截軸所得的線段長度必大于2,其中結(jié)論正確的個(gè)數(shù)有 ( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖示一架水平飛行的無人機(jī)AB的尾端點(diǎn)A測得正前方的橋的左端點(diǎn)P的
俯角為α其中tanα=2,無人機(jī)的飛行高度AH為500米,橋的長度為1255米.
①求點(diǎn)H到橋左端點(diǎn)P的距離;
②若無人機(jī)前端點(diǎn)B測得正前方的橋的右端點(diǎn)Q的俯角為30°,求這架無人機(jī)的長度AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】事件發(fā)生的可能性有大有小,請你把下列事件發(fā)生可能性的大小按由小到大的順序排列起來__________.(只排序號(hào))
①書包里有12本不同科目的教科書,隨手摸出一本,恰好是數(shù)學(xué)書;
②花2元買了一張彩票,就中了500萬大獎(jiǎng);
③我拋了兩次硬幣,都正面向上;
④若,則和互為相反數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,定義點(diǎn)P(x,y)的變換點(diǎn)為P′(x+y,x﹣y).
(1)如圖1,如果⊙O的半徑為,
①請你判斷M(2,0),N(﹣2,﹣1)兩個(gè)點(diǎn)的變換點(diǎn)與⊙O的位置關(guān)系;
②若點(diǎn)P在直線y=x+2上,點(diǎn)P的變換點(diǎn)P′在⊙O的內(nèi),求點(diǎn)P橫坐標(biāo)的取值范圍.
(2)如圖2,如果⊙O的半徑為1,且P的變換點(diǎn)P′在直線y=﹣2x+6上,求點(diǎn)P與⊙O上任意一點(diǎn)距離的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年9月8日—10日,第六屆翼裝飛行世界錦標(biāo)賽在我市天門山風(fēng)景區(qū)隆重舉行,來自全球11個(gè)國家的16名選手參加了激烈的角逐.如圖,某選手從離水平地面1000米高的A點(diǎn)出發(fā)(AB=1000米),沿俯角為的方向直線飛行1400米到達(dá)D點(diǎn),然后打開降落傘沿俯角為的方向降落到地面上的C點(diǎn),求該選手飛行的水平距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“機(jī)動(dòng)車行駛到斑馬線要禮讓行人”等交通法規(guī)實(shí)施后,某校數(shù)學(xué)課外實(shí)踐小組就對這些交通法規(guī)的了解情況在全校隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為四種:A.非常了解,B.比較了解,C.基本了解,D.不太了解,實(shí)踐小組把此次調(diào)查結(jié)果整理并繪制成下面不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
請結(jié)合圖中所給信息解答下列問題:
(1)填空:本次共調(diào)查_____名學(xué)生;扇形統(tǒng)計(jì)圖中C所對應(yīng)扇形的圓心角度數(shù)是_____°;
(2)請直接補(bǔ)全條形統(tǒng)計(jì)圖;
(3)填空:扇形統(tǒng)計(jì)圖中,m的值為_____;
(4)該校共有500名學(xué)生,根據(jù)以上信息,請你估計(jì)全校學(xué)生中對這些交通法規(guī)“非常了解”的約有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知O為圓錐的頂點(diǎn),M為圓錐底面上一點(diǎn),點(diǎn)P在OM上.一只蝸牛從P點(diǎn)出發(fā),繞圓錐側(cè)面爬行,回到P點(diǎn)時(shí)所爬過的最短路線的痕跡如圖所示.若沿OM將圓錐側(cè)面剪開并展開,所得側(cè)面展開圖是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家1至6月份的用水量統(tǒng)計(jì)如圖所示,關(guān)于這組數(shù)據(jù),下列說法錯(cuò)誤的是( ).
A、眾數(shù)是6噸 B、平均數(shù)是5噸 C、中位數(shù)是5噸 D、方差是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com