如圖,已知中,F(xiàn)是BC邊的中點,連接DF并延長,交AB的延長線于點E.求證:AB=BE.
證明見解析.

試題分析:根據(jù)平行四邊形性質(zhì)得出AB=DC,AB∥CD,推出∠C=∠FBE,∠CDF=∠E,證△CDF≌△BEF,推出BE=DC即可.
∵F是BC邊的中點,
∴BF=CF,
∵四邊形ABCD是平行四邊形,
∴AB=DC,AB∥CD,
∴∠C=∠FBE,∠CDF=∠E,
∵在△CDF和△BEF中

∴△CDF≌△BEF(AAS),
∴BE=DC,
∵AB=DC,
∴AB=BE.
考點: 1.平行四邊形的性質(zhì);2.全等三角形的判定與性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在△ABC中,E、D分別為AB、AC上的點,且ED//BC,O為DC中點,連結(jié)EO并延長交BC的延長線于點F,則有S四邊形EBCD=SEBF.
(1)如圖2,在已知銳角∠AOB內(nèi)有一個定點P.過點P任意作一條直線MN,分別交射線OA、OB于點M、N.將直線MN繞著點P旋轉(zhuǎn)的過程中發(fā)現(xiàn),當(dāng)直線MN滿足某個條件時,△MON的面積存在最小值.直接寫出這個條件:_______________________.
(2)如圖3,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點A、B、C、P的坐標(biāo)分別為(6,0)、(6,3)、(,)、(4、2),過點P的直線l與四邊形OABC一組對邊相交,將四邊形OABC分成兩個四邊形,求其中以點O為頂點的四邊形面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD為矩形,四邊形AEDF為菱形.
(1)求證:△ABE≌△DCE;
(2)試探究:當(dāng)矩形ABCD邊長滿足什么關(guān)系時,菱形AEDF為正方形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

對正方形ABCD分劃如圖①,其中E、F分別是BC、CD的中點,M、N、G分別是OB、OD、EF的中點,沿分劃線可以剪出一副由七塊部件組成的“七巧板”.  
(1)如果設(shè)正方形OGFN的邊長為l,這七塊部件的各邊長中,從小到大的四個不同值分別為l、x1、x2、x3,那么x1=    ;各內(nèi)角中最小內(nèi)角是    度,最大內(nèi)角是      度;用它們拼成的一個五邊形如圖②,其面積是     ,
(2)請用這副七巧板,既不留下一絲空白,又不相互重疊,拼出2種邊數(shù)不同的凸多邊形,畫在下面格點圖中,并使凸多邊形的頂點落在格點圖的小黑點上(格點圖中,上下、左右相鄰兩點距離都為1).
注:不能拼成與圖①或②全等的多邊形!
        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在四邊形ABCD中,AB⊥BC,∠A=∠C=100°,則∠D的度數(shù)是 (   )
A.60°B.70°C.90°D.100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方形ABCD的邊長為3,點E,F(xiàn)分別在邊AB,BC上,AE=BF=1,小球P從點E出發(fā)沿直線向點F運(yùn)動,每當(dāng)碰到正方形的邊時反彈,反彈時反射角等于入射角.當(dāng)小球P第一次碰到BC邊時,小球P所經(jīng)過的路程為       ;當(dāng)小球P第一次碰到AD邊時,小球P所經(jīng)過的路程為       ;當(dāng)小球P第n(n為正整數(shù))次碰到點F時,小球P所經(jīng)過的路程為         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

矩形具有而菱形不一定具有的性質(zhì)是  (  )
A.對角線互相垂直B.對角線相等C.對角線互相平分D.對角互補(bǔ)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如果一個多邊形的內(nèi)角和是14400,那么這個多邊形的邊數(shù)是        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方形ABCD的邊長是2,∠DAC的平分線交DC于點E,若點P、Q分別是AD和AE上的動點,則DQ+PQ的最小值為     

查看答案和解析>>

同步練習(xí)冊答案