【題目】在O中,弦AB和弦AC構(gòu)成的∠BAC=28°,M、N分別是AB和AC的中點(diǎn),則∠MON的度數(shù)為______.
【答案】28°或152°
【解析】
連接OM,ON,利用垂徑定理得OM⊥AB,ON⊥AC,再分類討論,當(dāng)AB,AC在圓心異側(cè)時(shí)(如圖1),利用四邊形內(nèi)角和得結(jié)果;當(dāng)AB,AC在圓心同側(cè)時(shí)(如圖2),利用相似三角形的性質(zhì)得結(jié)果.
連接OM,ON,
∵M(jìn)、N分別是AB和AC的中點(diǎn),
∴OM⊥AB,ON⊥AC,
OM⊥AB,ON⊥AC,
當(dāng)AB,AC在圓心異側(cè)時(shí)(如圖1),
∵∠BAC=28°,
在四邊形AMON中,
∴∠MON=360°﹣90°﹣90°﹣28°=152°;
當(dāng)AB,AC在圓心同側(cè)時(shí)(如圖2),
∵∠ADM=∠ODN,∠AMD=∠OND,
∴△ADM∽△ODN,
∴∠MON=∠BAC=28°.
故答案為:152°或28°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了幫助貧困家庭脫困,精準(zhǔn)扶貧小組幫助一農(nóng)戶建立如圖所示的長方形養(yǎng)雞場,長方形的面積為45m2(分為兩片),養(yǎng)雞場的一邊靠著一面長為14m的墻,另幾條邊用總長為22m的竹籬笆圍成,每片養(yǎng)雞場的前面各開一個(gè)寬1m的門.求這個(gè)養(yǎng)雞場的長與寬.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,F是AD中點(diǎn),延長BC到E,CE=BC,連結(jié)DE、CF,∠B=60°,AB=3,AD=4,則DE=_______________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(3分)如圖,AD是△ABC的角平分線,DE⊥AC,垂足為E,BF∥AC交ED的延長線于點(diǎn)F,若BC恰好平分∠ABF,AE=2BF.給出下列四個(gè)結(jié)論:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結(jié)論共有( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,等腰Rt△ABC,等腰Rt△ADE,AB⊥AC,AD⊥AE,AB=AC,AD=AE,CD交AE、BE分別于點(diǎn)M、F.
(1)求證:△DAC≌△EAB.
(2)求證:CD⊥BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,已知AB∥CD,AD⊥AB,AD=2,AB+CD=4,點(diǎn)E為BC的中點(diǎn).
(1)求四邊形ABCD的面積;
(2)若AE⊥BC,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=-2x與直線y=kx+b相交于點(diǎn)A(a,2),并且直線y=kx+b經(jīng)過x軸上點(diǎn)B(2,0).
(1)求直線y=kx+b的解析式;
(2)求兩條直線與y軸圍成的三角形面積;
(3)直接寫出不等式(k+2)x+b≥0的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的周長為36,對角線AC,BD相交于點(diǎn)O,點(diǎn)E是CD的中點(diǎn),BD=12,則△DOE的周長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABD中,∠BAD=80°,C為BD延長線上一點(diǎn),∠BAC=130°,∠ABD的角平分線與AC交于點(diǎn)E,連接DE.
(1)求證:點(diǎn)E到DA、DC的距離相等;
(2)求∠BED的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com