【題目】為配合全市“禁止焚燒秸稈”工作,某學(xué)校舉行了“禁止焚燒秸稈,保護(hù)環(huán)境,從我做起”為主題的演講比賽. 賽后組委會(huì)整理參賽同學(xué)的成績(jī),并制作了如下不完整的頻數(shù)分布表和頻數(shù)分布直方圖.

分?jǐn)?shù)段(分?jǐn)?shù)為x

頻數(shù)

百分比

60x70

8

20%

70x80

a

30%

80x90

16

b%

90x100

4

10%

請(qǐng)根據(jù)圖表提供的信息,解答下列問(wèn)題:

1)表中的a ,b ;請(qǐng)補(bǔ)全頻數(shù)分布直方圖;

2)若用扇形統(tǒng)計(jì)圖來(lái)描述成績(jī)分布情況,則分?jǐn)?shù)段70x80對(duì)應(yīng)扇形的圓心角的度數(shù)是 ;

3)競(jìng)賽成績(jī)不低于90分的4名同學(xué)中正好有2名男同學(xué),2名女同學(xué). 學(xué)校從這4名同學(xué)中隨機(jī)抽2名同學(xué)接受電視臺(tái)記者采訪,則正好抽到一名男同學(xué)和一名女同學(xué)的概率為

【答案】112,40;,補(bǔ)全直方圖見(jiàn)解析;(2108°;(3

【解析】

1)首先根據(jù)分?jǐn)?shù)段為60≤x70的頻數(shù)除以頻率求得總?cè)藬?shù),然后減去其它小組的頻數(shù)即可求得a的值,根據(jù)總?cè)藬?shù)和分?jǐn)?shù)段為80≤x90的頻數(shù)即可求得b的值;根據(jù)求出的a的值,即可補(bǔ)全頻數(shù)分布直方圖;

2)用360°乘以相應(yīng)分?jǐn)?shù)段所占的百分比即可求得圓心角的度數(shù);

3)列表將所有等可能的結(jié)果列舉出來(lái),再利用概率公式求解即可.

解:(1)∵分?jǐn)?shù)段為60x70的頻數(shù)為8,占20%,∴總?cè)藬?shù)為8÷20%40人,

a40816412,b%×100%40%,即b40

故答案為:12,40;

補(bǔ)全頻數(shù)分布直方圖如下:

2)∵分?jǐn)?shù)段為70x80所占的百分比為30%,

∴分?jǐn)?shù)段70x80對(duì)應(yīng)扇形的圓心角的度數(shù)為:360°×30%108°,

故答案為:108°;

3)用A、B表示2名男生,用a、b表示2名女生,列表得:

∵共有12種等可能的結(jié)果,其中一男一女的有8種情況,

P(正好抽到一男一女)=

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】近一周,各個(gè)學(xué)校均在緊張有序地進(jìn)行中考模擬考試,學(xué)生們通過(guò)模擬考試來(lái)調(diào)整自己的狀態(tài)并了解自己的學(xué)業(yè)水平.某中學(xué)物理教研組想通過(guò)此次中考模擬的成績(jī)來(lái)預(yù)估中考的各個(gè)分?jǐn)?shù)段人數(shù),在全年級(jí)隨機(jī)抽取了男.女各40名學(xué)生的成績(jī)(滿分為80分,女生成績(jī)中最低分為45分),并將數(shù)據(jù)進(jìn)行整理分析,給出了下面部分信息:

①男生成績(jī)扇形統(tǒng)計(jì)圖和女生成績(jī)頻數(shù)分布直方圖如下:(數(shù)據(jù)分組為A組:x<50;B組:50≤x<60;C組:60≤x<70D組:70≤x≤80

②男生C組中全部15名學(xué)生的成績(jī)?yōu)椋?/span>

63,69,6462,6869,6569,65,6667,6167,6669

③兩組數(shù)據(jù)的平均數(shù).中位數(shù).眾數(shù).滿分率.極差(單位:分)如下表所示:

平均數(shù)

中位數(shù)

眾數(shù)

滿分率

極差

男生

70

b

c

25%

32

女生

70

68

78

15%

d

1)扇形統(tǒng)計(jì)圖A組學(xué)生中所對(duì)應(yīng)的圓心角α的度數(shù)為 ,中位數(shù)b= ,眾數(shù)c= ,極差d=

2)通過(guò)以上的數(shù)據(jù)分析,你認(rèn)為 (填男生女生)的物理成績(jī)更好,并說(shuō)明理由:

;②

3)若成績(jī)?cè)?/span>70分(包含70分)以上為優(yōu)秀,請(qǐng)你估計(jì)該校1200名學(xué)生中此次考試中優(yōu)秀的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】水果基地為了選出適應(yīng)市場(chǎng)需求的小西紅柿秧苗,在條件基本相同的情況下,把兩個(gè)品種的小西紅柿秧苗各300株分別種植在甲、乙兩個(gè)大棚,對(duì)市場(chǎng)最為關(guān)注的產(chǎn)量和產(chǎn)量的穩(wěn)定性進(jìn)行了抽樣調(diào)查,過(guò)程如下:

收集數(shù)據(jù)從甲、乙兩個(gè)大棚中分別隨機(jī)收集了相同生產(chǎn)周期內(nèi)25株秧苗生長(zhǎng)出的小西紅柿的個(gè)數(shù):

甲:26,3240,51,4474,44,63,73,7481,54,624133,54,43,3451,6364,73,64,54,33

乙:2735,46,55,48,36,47,6882,48,57,66,75,27,36,5757,66,58,61,71,38,47,46,71

整理數(shù)據(jù)按如下分組整理樣本數(shù)據(jù):

個(gè)數(shù)(x

株數(shù)(株)

大棚

25≤x35

35≤x45

45≤x55

55≤x65

65≤x75

75≤x85

5

   

5

   

4

1

2

4

   

6

5

2

(說(shuō)明:45個(gè)以下為產(chǎn)量不合格,45個(gè)及以上為產(chǎn)量合格,其中45≤x65個(gè)為產(chǎn)量良好,65≤x85個(gè)為產(chǎn)量?jī)?yōu)秀)

分析數(shù)據(jù)兩組樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和方差如下表所示:

大棚

平均數(shù)

眾數(shù)

方差

53

   

236.24

53

57

215.04

得出結(jié)論

1)補(bǔ)全上述表格;

2)可以推斷出   大棚的小西紅柿秩苗品種更適應(yīng)市場(chǎng)需求,理由為   (至少?gòu)膬蓚(gè)不同的角度說(shuō)明推斷的合理性);

3)估計(jì)乙大棚的300株小西紅柿秧苗中產(chǎn)量?jī)?yōu)秀的有多少株?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(Ⅰ)如圖1,在菱形中,已知,,拋物線)經(jīng)過(guò),,三點(diǎn).

1)點(diǎn)的坐標(biāo)為__________,點(diǎn)的坐標(biāo)為__________

2)求拋物線的解析式.

(Ⅱ)如圖2,點(diǎn)的中點(diǎn),點(diǎn)的中點(diǎn),直線垂直于點(diǎn),點(diǎn)在直線上.

3)當(dāng)的值最小時(shí),則點(diǎn)的坐標(biāo)為____________;

4)在(3)的條件下,連接、,問(wèn)在拋物線上是否存在點(diǎn),使得以,,為頂點(diǎn)的三角形與相似?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以點(diǎn)C(04)為圓心,半徑為4的圓交y軸正半軸于點(diǎn)A,AB是⊙C的切線.動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿AB方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)QO點(diǎn)開(kāi)始沿x軸正方向以每秒4個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),且動(dòng)點(diǎn)PQ從點(diǎn)A和點(diǎn)O同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t()

1)當(dāng)t1時(shí),得到P1、Q1,求經(jīng)過(guò)A、P1Q1三點(diǎn)的拋物線解析式及對(duì)稱軸l;

2)當(dāng)t為何值時(shí),直線PQ與⊙C相切?并寫出此時(shí)點(diǎn)P和點(diǎn)Q的坐標(biāo);

3)在(2)的條件下,拋物線對(duì)稱軸l上存在一點(diǎn)N,使NPNQ最小,求出點(diǎn)N的坐標(biāo)并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017江西省,第12題,3分)已知點(diǎn)A(0,4),B(7,0),C(7,4),連接AC,BC得到矩形AOBC,點(diǎn)D的邊AC上,將邊OA沿OD折疊,點(diǎn)A的對(duì)應(yīng)邊為A'.若點(diǎn)A'到矩形較長(zhǎng)兩對(duì)邊的距離之比為1:3,則點(diǎn)A'的坐標(biāo)為______________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綠水青山就是金山銀山的理念已融入人們的日常生活中,因此,越來(lái)越多的人喜歡騎自行車出行.某自行車店在銷售某型號(hào)自行車時(shí),以高出進(jìn)價(jià)的50%標(biāo)價(jià).已知按標(biāo)價(jià)九折銷售該型號(hào)自行車8輛與將標(biāo)價(jià)直降100元銷售7輛獲利相同.

(1)求該型號(hào)自行車的進(jìn)價(jià)和標(biāo)價(jià)分別是多少元?

(2)若該型號(hào)自行車的進(jìn)價(jià)不變,按(1)中的標(biāo)價(jià)出售,該店平均每月可售出51輛;若每輛自行車每降價(jià)20元,每月可多售出3輛,求該型號(hào)自行車降價(jià)多少元時(shí),每月獲利最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】五一期間,某商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種商品,已知購(gòu)進(jìn)甲商品1件和乙商品3件共需240元;購(gòu)進(jìn)甲商品2件和乙商品1件共需130元.

1)求甲、乙兩種商品每件的進(jìn)價(jià)分別是多少元?

2)商場(chǎng)決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場(chǎng)需求,需購(gòu)進(jìn)甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請(qǐng)你求出獲利最大的進(jìn)貨方案,并確定最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一枚質(zhì)地均勻的正四面體骰子,它有四個(gè)面并分別標(biāo)有數(shù)字,,,如圖,正方形頂點(diǎn)處各有一個(gè)圈.跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子著地一面上的數(shù)字是幾,就沿正方形的邊順時(shí)針?lè)较蜻B續(xù)跳幾個(gè)邊長(zhǎng).如:若從圖起跳,第一次擲得,就順時(shí)針連續(xù)跳個(gè)邊長(zhǎng),落到圈;若第二次擲得,就從開(kāi)始順時(shí)針連續(xù)跳個(gè)邊長(zhǎng),落到圈設(shè)游戲者從圈起跳.

)嘉嘉隨機(jī)擲一次骰子,求落回到圈的概率

淇淇隨機(jī)擲兩次骰子,用列表法求最后落回到圈的概率,并指出她與嘉嘉落回到圈的可能性一樣嗎?

查看答案和解析>>

同步練習(xí)冊(cè)答案